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AN EVALUATION OF RANDOM ANALYSIS METHODS 

FOR THE DETERMINATION OF PANEL DAMPING 

By Waman V. Bhat and John F. Wilby 
The Boeing Company, Seattle, Washington 

1.0 SUMMARY 

An analytical study is made of steady-state and non-steady-state methods for the mea- 
surement of panel damping. Particular emphasis is placed on the use of random process tech- 
niques in conjunction with digital data reduction methods. The steady-state methods considered 
use the response power spectral density, response autocorrelation, excitation-response cross- 
power spectral density, or single-sided Fourier transform (SSFT) of the response autocorrela- 
tion function. Non-steady-state methods are associated mainly with the use of rapid frequency 
sweep excitation. Problems associated with the practical application of each method are 
evaluated with specific reference to the case of a panel exposed to a turbulent airflow, and 
two methods, the power spectral density and the single-sided Fourier transform methods, are 
selected as being the most suitable. These two methods are demonstrated experimentally, and 
it is shown that the power spectral density method is satisfactory under most conditions, pro- 
vided that appropriate corrections are applied to account for filter bandwidth and background 
noise errors. Thus, the response power spectral density method is recommended for the mea- 
surement of the damping of panels exposed to a moving airflow. 



2.0 INTRODUCTION 

The amplitude of vibration of a structural system exposed to an exciting force is con- 
trolled, to a large extent, by the total damping present in the system. When predicting the 
response of a structure to a given excitation it is necessary to  know the damping to a suffi- 
cient degree of accuracy. Equally important, when measuring the vibration of a model or  
full-scale structure under certain excitation conditions, measurements of the panel damping 
are required if the experimental data are to  be extrapolated to other conditions with reason- 
able reliability. 

Techniques for the measurement of the damping of a structure have been developed 
over the years, but, until recently, the methods have been limited to the use of steady-state, 
discrete frequency excitation (e.g., refs. 1 through 4). For a structural system whose damping 
does not vary with operating condition or environment, and where measurements can be 
made under specially controlled test conditions, the discrete frequency methods are usually 
adequate. However, when the damping is dependent on operating condition, for example 
where flutter or acoustic damping is important, alternative techniques for damping measure- 
ment have to be used. In response to this need, techniques using steady-state random excita- 
tion and transient excitation have been developed in recent years. These alternative methods 

. can be used when the structure is exposed to random excitation or is exposed to the operat- 
ing environment for only a short time or when noise interference occurs in the measured 
excitation or response. 

The case of a structure exposed to  a moving airstream is an important example of a test 
situation where the steady-state, discrete frequency methods are unreliable. It was for this 
reason that the present study of damping measurement methods was undertaken. Results of 
the study, which considers steady-state random excitation and transient excitation methods, 
are contained in this report. Essentially, the discussion can be separated into two parts, the 
first of which is an analytical survey of available methods. The second part describes an 
experimental demonstration of two techniques that, on the basis of the analytical study, are 
judged to be the most suitable for the application under consideration, namely, the measure- 
ment of panel damping in the presence of a moving airstream. Throughout the discussion, 
emphasis is placed on the accuracy and reliability of each method in practical situations. 
Digital techniques for data reduction will be required for several of the damping measurement 
methods. Therefore, special attention is given to problems associated with these digital 
techniques. 

As a final result of the study, techniques will be recommended for the measurement of 
panel damping in the presence of an airflow. In principle, the methods will be applicable to  
structures of greater complexity than a simple panel in a wind tunnel wall. However, it may 
be necessary to assume that there is some knowledge of the natural frequencies and mode 
shapes of the system so that the measuring tranducers can be placed at  optimum locations. 

The program was carried out  at The Boeing Company, Seattle, Washington and was 
monitored by Dr. Wei J .  Chyu, NASA Ames Research Center. 



SYMBOLS 

A 

A, B 

A'?! Ap 

a l , " l  

C 

cp ( 5  : X " > 

Cp1 ( 5 ; ~ ' ;  a )  

Ca 

Cae 

f~ 

fa f m,n 

fmax 

Af,, AfA 

A ~ F  

A ~ M  

A f t  

area of structure, for panel A = L1 L3 

see equation (29) 

defined by equations (43) and (83) 

defined by equation (84) 

Viscous damping rate 

real part of cross-power spectral density function S (x ', _x ", w) P - 

real part of cross-power spectral density function Spl (< x ", w) 

generalized damping coefficient in ath mode 

equivalent viscous damping coefficient in terms of the hysteretic 
damping, ( K ~ v ~ ) I w  

flexural rigidity of a plate 

weighting function, lag window 

see equation (39) 

single-sided Fourier transform of the response autocorrelation 
function, Rw (T), defined by equation(7 1) 

frequency 

center frequency of analyzing filter 

natural frequency of mode ( a  - m,n) 

upper frequency of interest 

ideal half-power bandwidth of a resonance peak 

filter bandwidth at the half-power point 

measured bandwidth of a resonance peak 

frequency interval at which frequency-dependent functions are 
calculated, 1IAT ' 

modulus of vector H 

complex frequency response function for mode of order a, 
defined by equations (4) and (5) 



complex conjugate of Ha(w) 

time-varying frequency response function 

time-averaged square of frequency response function 

impulse response function for mode of order a, defined by 
equation (5) 

defined by equation (18) 

positive integer 

displacement joint acceptance for mode a 

displacement cross acceptance for modes cx,P 

miscellaneous constants or functions, defined in text 

time constant in w '(t) 

number of degrees of freedom in section 4.1.7 

number of data points used for calculating finite discrete 
transforms, 23 

panel length in x 1 direction 

panel length in x3 direction 

generalized external force in mode of order a 

mass per unit area 

generalized mass in mode of order a 

mode order in x direction denoting the number of modal 
half-wavelengths 

number of measurement locations in section 4.1.7 

number of data points 

mode order in x3 direction, denoting the number of modal 
half-wavelengths 

noise in response (see fig. 1) 

ratio of ideal bandwidth of resonance peak to  filter bandwidth, 
Af,/AfF 



Fourier transform of p(x,t), - defined by equation (1 0) 

complex conjugate of P(x,w) 

Fourier transform of p l ( t )  and p2(t), respectively 

Fourier transform of p(t) 

pressure at point _x and time t 

excitation and noise in excitation (see fig. 1) 

pressure at time n . AT 

* 
complex part of S (x', x", a )  P - -  

* 
complex part of S (x', x ", a )  p l  - - 
Fourier transform of q,(t) 

generalized coordinate of mode of order a 

autocorrelation function 

excitation pressure cross-correlation function 

displacement autocorrelation function 

narrow band autocorrelation function 

defined by equation (49) 

defined by equation (5 1 ) 

cross-correlation function, equation (62) 

autocorrelation at time delay n . AT 

mode order in xl direction 

defined by equation (39) 

white noise power spectral density 

power spectral density function 

power spectral density function of excitation p(5, t) 

power spectral density functions of excitations pl(x,  t )  and 
P ~ ( x ,  t), respectively 



power spectral density function of the displacement w(x, t )  

displacement power spectral density function in mode a 

cross-power spectral density function relating the excitation 
p(x', t) and response w(5, t), equations (54) and (55) 

contribution of a mode to Sw,p(z, x', w )  

power spectral density at a frequency of k . AfF 

digitizing or sampling rate, 1/A7 

mode order in x3 direction 

rate of change of arc length with frequency 

time parameters 

total sample length 

length of sample subinterval, N . AT 

length of subinterval after addition of zeros 

Fourier transform of La(t) 

number of subspectra, T/AT 

Fourier transform of the displacement w(x, - t) 

displacement at point x, and time t 

see equation (35) 

distance vector in (xl  ,x3) plane 

two-dimensional mode order 

two-dimensional mode order 

defined by equation (34) 

complex conjugate of Pp, 

defined by equation (3 1 ) 

nondimensional cross-power spectral density function relating 
the excitation and response, defined by equation (56) 



delta function 1 for x' = xo, 0 for x'# x-, 
delta function, 1 for T = 0, 0 for T # 0 

normalized standard error, equation (92) 

error in the frequency response function due t o  the drift in 
natural frequency 

viscous damping factor in mode of order a 

equivalent viscous damping factor ' 

see equation (25) 

sum of response power spectral densities at all measuring locations 
due to  mode of order p, defined by equation (36) 

see equation (39) 

stiffness 

stiffness in the mode of order a 

unitary matrix, defined by equation (32) 

complex conjugate of A pi 

panel mass per unit area 

hysteretic damping factor for mode of order a 

radius of curvature of the cross-power spectral density curve 

ratio of background noise power spectral density to  the true 
response power spectral density at resonance 

time delay 

maximum time delay in autocorrelation function 

sampling interval, 1 /s 

spectral window, filter frequency response function 

time-varying phase angle 

defined by equation (69) 

panel mode shapes of order a, and 



* 
copplex conjugate of +, and $0, respectively, $, $, and 
$0 - $0 

angular frequency 

angular frequency of mode of order a 

natural frequency for damped free vibrations,~, (1 - 112 

drift in the natural frequency 

maximum value of the drift in natural frequency 

time-independent part of resonance frequency of a system with 
a time-varying frequency response function 

angular frequency bandwidth 

angular frequency half-power bandwidth of a resonance peak 
for mode of order a 



3.0 DAMPING OF STRUCTURES 

3.1 GENERAL DISCUSSION 

Two important sources of damping in typical aerospace structures are structural hysteresis 
and acoustic radiation. For structures with no special damping treatments, hysteretic damping 
is mainly due to the joints in the structure, although there is some contribution from the 
damping of the material itself. The hysteretic damping force is proportional to  displacement 
and is in counterphase with velocity. Acoustic radiation damping arises from the dissipation 
of energy in the surrounding air and is viscous controlled. Viscous damping forces are propor- 
tional to, and in counterphase with, the structural velocity. 

From available literature it is possible to  determine typical values of the damping ratios 
of structures ranging from single rectangular plates to  stiffened airplane structures. Maestrello 
(ref. 5) and Wilby (ref. 6) show damping ratios in the range 0.001 < 5 Q 0.008 for single 
rectangular panels with clamped boundaries. In some cases (ref. 6), the damping is seen to  be 
dependent on the environment, presumably when the acoustic radiation damping forms a 
significant fraction of the total damping. Laboratory measurements on stiffened panels by 
Mead (refs. 7 and 8) give damping ratios in the range 0.002 to  0.01 3. Higher damping ratios, 
0.014 to 0.020, have been measured on aircraft structures by Clarkson and Ford (ref. 9), 
although Mead (ref. 7) has placed some doubt on the accuracy of these values because the 
method of data anlaysis could cause overestimation of the damping. 

The damping of structures can be increased greatly by the addition of special treatments 
such as damping tape. Mead (ref. 8)  lists damping ratios up to  0.07 for a rectangular aluminum 
plate with one layer of damping tape, and Maestrello (ref. 5) measures damping ratios as high 
as 0.1 for a plate with two layers of tape. These results show a more than ten-fold increase in 
the damping with respect to  the untreated case. The damping introduced by the treatment, 
using either unconstrained or constrained layers, is hysteretic in nature (ref. 8), with the 
result that the damping of the treated structure will be mainly hysteretic. 

The above data show that, for untreated structures of the type likely to be found in 
aerospace construction, the damping will be low. Thus, in the mathematical analysis,the 
damping can be represented for simplicity as either solely hysteretic or solely viscous. As 
will be seen later, this is particularly useful for random vibration where the concept of 
hysteretic damping is not strictly valid. When damping treatment is added and the damping 
is mainly hysteretic, the assumption that the damping is solely viscous will still be made, 
although it will introduce some error. 

Several methods for measuring the damping of structures are available-discrete frequency 
or random, steady-state or transient-and the choice of method for a particular test will 
depend on the experimental conditions present. Discrete frequency methods are suitable for 
conditions where there is no noise present in either the excitation o r  response. These methods 
have been discussed extensively by several authors (see refs. 1,  2, 4, and 10) and will not be 
included in this report. In the present case of interest, the steady-state, discrete frequency 
method is unsatisfactory because of the high level of "noise" introduced by the pressure 
fluctuations in the airflow, and the method has been excluded from consideration. Thus, the 



analytical study in sections 4.0 through 6.0 will consider only steady-state random methods 
and transient methods. In some cases the turbulent airflow will provide the necessary excita- 
tion, but in other cases a second excitation will be introduced as a reference and the turbu- 
lent airflow regarded as noise in the system. The methods described will apply to  any repre- 
sentation of the panel vibration (displacement, velocity, acceleration, etc.), but since the 
method chosen will be used with displacement probe instrumentation, the structural vibra- 
tion will be described, without loss of generality, in terms of displacement. 

Several of the measurement methods discussed will be suitable for either analog or 
digital data analysis techniques, but in other cases digital analysis procedures will be neces- 
sary. Thus, emphasis will be placed on the use of digital techniques for all methods, particu- 
larly when these techniques involve relatively new problem areas. 

3.2 PANEL VIBRATION 

At several stages in the analysis of the damping methods, reference will be made to the 
equation of motion for rectangular panels. Thus it is appropriate to  outline the normal 
mode analysis of a rectangular plate exposed t o  random excitation, the resulting displace- 
ment power spectral density and autocorrelation equations being extensions of the corre- 
sponding equations for single-degree-of-freedom systems. Although the analysis is performed 
with specific reference to  rectangular plates, the general conclusions will have wider application. 

Assume that the displacement w(5,t) of the vibrating structure obeys the thin-plate 
equation for small deflections 

where M is the mass per unit area, C is the viscous damping, D is the flexural rigidity, and 
p(2,t) is the exciting force. D can be complex if hysteretic damping is included in the stiffness 
term. Assume further that the solution to equation (1) can be expressed in terms of a linear 
sum of normal modes, i.e., 

where q,(t) is the generalized coordinate for the a t h  mode and $,(x) is the mode shape 
function. Then the equation of motion for the a t h  mode is given by 

where M,, C,, ~ , ( l  + iva), and L, are, respectively, the generalized mass, viscous damping, 
complex stiffness, and external force in the a t h  mode. The parameter v, represents the 
hysteretic damping of the system. If the panel surface density is denoted by p(x_), then 



where the notation & d~ denotes the double integral .&L1 gL3 dx3dx1 over the panel 
a r e a A =  LIL3. 

For purely viscous damping the frequency response function for the mode is 

where wo,=dKcw/Ma is the undamped natural frequency and t, = c,/=?is the damping 
ratio. The frequency response function Ho,(w) and the impulse response funct~on h,(t) are 
related by Fourier transformation, such that 

and 

it being noted that h,(t) = 0 for t < 0. It can be shown that h,(t) is real, as is expected from 
physical reasoning. 

For hysteretic damping alone, 

but the Fourier transform of this function is complex and does not represent a physically 
realizable response. This inconsistency illustrates the difficulties encountered when the con- 
cept of hysteretic damping is used in the analysis of vibrations which are not of the deter- 
ministic sinusoidal type. It has been suggested (ref. 8)  that, to overcome the problem, the 
hysteretic damping term be replaced by an equivalent viscous term Cae = ( K ~ v ~ ) / ~ .  The 
equation of motion would then be 

Then the analysis can be performed as for viscous damping and the hysteretic damping rein- 
stated in the final result (replacing the term wt,,/w~, with v,/2). This argument-provides 
further justification for considering only viscous damping in the subsequent analyses. 

If the equation of motion for viscous damping, similar to equation (7), is Fourier trans- 
formed with respect to time, the equation reduces to 



where Q,(w) is the Fourier transform (or complex Fourier amplitude) of q,(t), i.e., 

and U,(o) is the Fourier transform of L,(t). 

Also, 

where 

Thus, from equation (2) the Fourier transform of the displacement is 

w c x , ~ )  = CQ,(U)$,(~), 
a 

(1 1) 

and the displacement power spectral density function at = (x ,x3) is 

where the asterisk denotes the complex conjugate. The parameter 5 in Sw(x,o) is included to 
indicate that the displacement power spectral density function for a finite structure is 
inhomogeneous. 

Substituting equations (8), (9), and (1 1) in equation (1  2), 

where Sp(xl,x";w) is the excitation pressure cross-power spectral density function, 

Using the relationships 

and 



the displacement autocorrelation function a t  x is 

where Rp(xv, 5' , r)  is the excitation pressure cross-correlation function. 

For a single-degree of freedom system such as a dashpot, the above equations (1 3) and 
(14) reduce t o  the much simpler forms 

and 

respectively 

3.3 FREQUENCY RESPONSE FUNCTIONS 

In some of the methods discussed in the following sections, the procedure reduces to  the 
plotting of the frequency response function Ha@) in the con~plex plane. The damping ratio 
is estimated by fitting a circle to  the data points in the neighborhood of the natural frequency, 
as a representation of the single-degree-of-freedom system. This technique is used to  minimize 
effects which cause the measured function to  deviate from the true frequency response func- 
tion for a single mode. 

Kennedy and Pancu (ref. 4)  have shown that for a single-degree-of-freedom system with 
hysteretic damping, the plot of H&'(u) is a straight line in the complex Argand plane and 
the plot of Ha@) (equation (6)) is a circle. However, for viscous damping the locus of Hil(w) 
is a parabola and can be considered as an approximation to a straight line only in the neighbor- 
hood .of the natural frequency when the damping is small. Thus, the fitting of a circle to  the 
experimental data for H,(w) is, in itself, an approximation when the damping is considered 
to be viscous. 



4.0 STEADY-STATE METHODS 

In this section, four methods using steady-state random excitation will be discussed. 
The methods use: 

a) The response power spectral density function 

b) The response autocorrelation function 

c) The excitation-response cross-power spectral density function 

d) The single-sided Fourier transform of the response autocorrelation function 

In three of the methods, a), b), and d), the pressure fluctuations in the turbulent airflow 
provide the random excitation forces. Method c) requires the introduction of a second excita- 
tion that is used as reference for the cross-power spectral density function, since it is not 
practical to use the airflow pressure fluctuations as a datum. 

4.1 RESPONSE POWER SPECTRAL DENSITY 

4.1.1 Introduction 

The response power spectral density method is the stochastic equivalent of the response 
amplitude method for discrete frequency excitation. The response power spectrum will 
exhibit a series of peaks associated with the natural frequencies of the structure, and the damp- 
ing, in common with the discrete frequency excitation case, can be estimated from measure- 
ments of the bandwidth of the resonant peaks. The response power spectral density method 
is conceptually simple since the damping factor is related to the bandwidth of the resonance 
peak. In principle, the method has the advantage that there are no requirements additional to 
those normally associated with the measurement of structural response (fig. 1 a). However, 
for practical multimodal systems, the method suffers from a number of limitations that can 
be separated into two broad categories: first, the basic limitations inherent in the method 
and, second, the limitations imposed by the data analysis techniques and other peculiarities 
of the experimental procedure. The basic limitations include errors introduced by the close- 
ness of natural frequencies and the effect of statistical coupling. Examples of the second 
category will include errors due to drift of the natural frequencies, the finite bandwidth of 
the filter system, contributions from the background noise, and the statistical scatter due 
to the finite data sample length. These limitations are often interdependent and occasionally 
impose somewhat severe requirements on the experiment, e.g., if a very small filter bandwidth 
is required due to very light damping, then very long data sample lengths will be required to 
ensure acceptable statistical scatter (or to ensure high statistical reliability). 



Errors encountered in the practical use of the response power spectral density method 
are investigated analytically. The investigations are carried out with two questions in mind: 

a) How can the error under investigation be minimized? 

b) How can corrections be made to data acquired from a particular experiment? 

Some of the errors encountered are not peculiar to the power spectral density method 
since they, or their equivalents, arise in other methods. 

4.1.2 Basic Analysis 

The displacement power spectral density function for a rectangular panel exposed to 
random excitation is given by equation (1 3). It can now be written in the form 

where 

and Sw(x,w) is evaluated at point 5 s (xl  ,x3)  Joint acceptances Jaa(w) and cross acceptances 
Jap(w) can be defined as 

and 

The joint acceptance term can be simplified slightly because if 

S (XI,& ",a) = C (x',x'',o) - i Q p ( ~ ' , z U  ,a) P - P - 

it can be shown (ref. 6) that 

It should be noted that the excitation p(g,t) will affect the response power spectral density 
Sw(x,w) only through I (w). When the excitation is homogeneously distributed over the " P 



panel, the integrand in equation (1 8) is a function of separation distance only. For an 
inhomogeneous excitation, the integrand, and hence I (a), will depend on the location of 
the excitation on the panel. 

QP 

For a single mode, the displacement power spectral density is given by 

Thus, the displacement power spectral density depends on the joint acceptance Jaa(o), loca- 
tion 3 (via mode shape and frequency response function H (o). Jaa(o) is weakly PC 
dependent on w (see ref. 6) and can be considered to be constant in the vicinity of the reson- 
ance peak. The mode shape is essentially a scaling factor giving maximum deflection at 
an antinode and zero deflection at a node. Therefore, for a single mode, the displacement 
power spectral density is proportional to the square of the frequency response function, or 

where K is a factor that depends on the location of the measuring probe and the joint accept- 
ance. If the excitation pressure power spectral density is approximately constant in the fre- 
quency range of interest, the frequency response function and the damping of the system can 
be estimated from the displacement power spectral density function. The viscous damping 
ratio is given by 

where Afa is the half-power bandwidth of the resonance peak of mode a ,  occurring at a 
frequency of fa. 

For a single-point excitation, with power spectral density Sp(w) at location xo, the 
displacement power spectral density function is 



4.1.3 Statistical Coupling 

Equation (1 7) for the displacement power spectral density function can be written in 
the form 

The cross terms, for which a#  0, are due to  statistical coupling between the modes of 
2 the panel, and these terms will cause the response peaks to  deviate from the IH,(w)l Iaa(w) 

shape. Thus, the statistical coupling or  cross terms will influence the damping measurements. 

Three factors will affect the contributions from statistical coupling between modes a 
and 0: cross acceptances J (a), frequency response functions Ha(w), Hp(w), and mode *f shapes &(x), Go(.). (Strict y speaking, the real function [H: (w)Hg(o)Jab(w) + 
H d w ) ~ p *  (a)Jpa(a)l should be considered as a whole). Thus, the effects of statistical cow 
pling on the measured displacement spectrum will depend on the damping and natural fre- 
quencies of the modes, the excitation cross-power spectral density, and the location at which 
the measurements are made. 

As an illustration of the effects of the cross terms, the response of a simply supported 
plate to turbulent boundary layer excitation has been calculated using the methods of 
reference 6. The plate is assumed to be aluminum with dimensions of 30.48 by 17.78 by 
0.102 cm (1 2 by 7 by 0.04 in.) and a damping ratio that is the same for all modes. The panel 
is exposed to typical Mach 2.0 flow. Displacement spectra were calculated both with and with- 
out the cross terms. The contributions due to statistical coupling at the eight lowest natural 
frequencies of the panel are shown in figure 2. For a dampin factor of 0.04, the contribu- -5 tions due to statistical coupling vary from about 10-I to 10 times the total power spectral 
density (including cross terms). In all cases, the contribution due to  the cross terms decreases 
with damping ratio. 

The influence of the cross terms on the measured damping can be estimated by compari- 
son of the calculated spectra. It is found that the error is approximately proportional to the 
cross-term contribution shown on the ordinate scale of figure 2. For the example under con- 
sideration and a damping factor less than 0.02, the error in the estimated damping factor will 
be less than 7%., 

It is interesting to note that the contributions due to statistical coupling, shown in 
figure 2, are highest for modes (l ,2) ,  (2,2), (4.l),  and (2,3). Wilby (ref. 6) has shown that, for '  
the boundary layer model used in the above calculations, 

Jap = 0,  for n + s odd 

where mode orders a E (m,n) and p = (r,s). Adjacent modes that satisfy the conditions that 
(n + s) be even will be expected to show the effects of statistical coupling most clearly. For 
the modes identified above, mode pairs ( l ,2) ,  (2,2) and(4,1), (2,3) satisfy the condition (n + s )  
even. 



4.1.4 Background Noise and Off-Resonant Contributions 

The measured displacement power spectral density function can be influenced by 
several undesirable effects, and the signals causing these effects can be referred to  as noise. 
The noise may be in the form of additional excitation forces or  electronic noise in the measur- 
ing equipment. Off-resonant contributions from neighboring modes also come within this 
definition of noise and can be treated in a similar manner. 

Consider first the effects caused by a second excitation that is additional to the turbu- 
lent boundary layer pressure field. For the sake of simplicity, assume that the system is a 
single-degree-of-freedom dashpot and the input and output signals are related as shown in 
figure 1 b. The two excitations are denoted by p 1 (t) and p2(t), where p2(t) represents the 
noise signal. 

Then 

where 

Thus, 

If p l ( t )  and p2(t) are uncorrelated, 

and 

[ M I S  (a) S,(w)=lH,(w)l 1 +Spl(w) p l  

where Spl (a) and S 2(w) are the power spectral density functions associated with p l ( t )  and 
p2(t), respectively. & Spl(w) and Sp2(u) are slowly varying functions of w ,  then even in the 
presence of noise in the excitation, the displacement power spectral density function is 
approximately proportional to  the squares of the frequency response function. Under these 
conditions, noise in the excitation introduces only negligible errors in the damping measured 
using the response power spectral density method. 



Extending the above analysis to the case of a single mode of a rectangular panel, 
equation (2  1) becomes 

where S (xt,_x",w) and S (xl,x",w) represent the cross-power spectral density functions of 
P 1 ~2 

the two signals, which are again assumed to be mutually uncorrelated. Thus, if damping 
estimates are now made directly from S,(~ ,U)~,  the displacement power spectral density for 
modea,  it is required that both Spl(x',_xf',w) and Sp2(x',xff, J be slowly varying with fre- 
quency. (I11 fact, the requirement applies only to the real part of each cross-power spectral 
density function.) 

When noise is present in the response signal also, the measured response, for a single- 
degree-of-freedom system, has the form 

where the noise signal n(t) is uncorrelated with the response w(t). Thus, noise in the response 
introduces an additional term ~ " ( u )  in the total response power spectral density function. 
The displacement power spectrum can be used for an accurate estimate of the damping ratio 
only when ~ " ( o )  can be neglected or  when corrections can be made to the data. 

The effects of contributions from the off-resonant modes will be similar to those of 
background noise in the response. If the effects of statistical coupling are neglected, the dis- 
placement power spectral density function for two adjacent modes, with no other noise in 
the system, is obtained from equation (1 7). 

Comparing equations (23) and (24) the term for mode /3 in the two-mode system has 
the same effect as the noise term ~ " ( o )  in equation (23). Therefore, these two sources of  
error can be investigated using the following representation for the displacement power 
spectral density function: 

where u denotes the ratio of background noise power spectral density to the true response 
power spectral density,at resonance frequency w,. For 7)= 0, the background noise has a 



constant power spectral density. Other frequency dependencies for the noise can be obtained 
by assigning appropriate values of q. For example, in the case of two modes, the contribution 
of the off-resonant mode P can be approximated by assigning positive and negative values to  
77 for f > fa and f < fa, respectively. P P 

The errors that the response power spectral density method can introduce into measure- 
ments of the damping ratio when background noise is present have been estimated for values 
of q equal to  0, +2, and f 4  and for different levels of background noise. These errors are 
shown in figure 3, as a percentage of the true damping factor, with[, , q ,  and o 
as parameters. For damping factor [, < 0.04, the error is almost independent of 5, and q 
and can be treated as a function of o only. 

Figure 3 cannot be used directly to  correct measured damping factors in practice. A 
typical response spectrum will contain a series of peaks and valleys. In such a case, the ratio 
of power spectral density in the valley to the resonant power spectral density of the adjacent 
peak can be used to  obtain the level of background noise. A typical chart that can be used to  
correct the measured damping factor, when lM is less than 0.04, is contained in figure 4. 

The above procedure will not give good estimates of the error when the two natural 
frequencies f, and f are very close together. Under such conditions the contribution from P 
the off-resonant mode will not be represented very accurately by a function of the form 07). 

It is interesting to  note that, in the present case, where the vibration and noise are both 
random, mutually uncorrelated signals, the power spectral components can be added together 
without phase problems. This is an advantage over the deterministic case where the phase 
difference between resonant and off-resonant contributions is important and changes rapidly 
in the neighborhood of the resonant frequency fa. 

4.1.5 Filter Bandwidth 

One of the critical problems in the use of the response power spectral density method 
is the finite bandwidth of the filter system, whether it be analog or digital. The finite band- 
width of the filter will cause loss of resolution in the spectra with associated broadening of 
the measured bandwidth of the resonant peak and overestimation of the damping-factor. 
Filter bandwidth effects have been thoroughly investigated by Forlifer (ref. 1 1) for viscous 
damping and by Wilby (ref. 6) for hysteretic damping. Therefore, detailed analysis of the 
subject is not required here and only relevant results are presented. 

Forlifer assumes rectangular filter characteristics so that the filter transfer function 
@(f) has the form 

= 0 elsewhere. 



The center frequency of the filter is fF and the bandwidth is AfF. Now, if AfM is the 
measured half-power bandwidth of the resonant peak, which has an actual bandwidth AfA, 
then Forlifer (ref. 1 I )  shows that AfF, AfM, and AfA are related by the equation 

This reduces to the simpler form 

if the trivial solution AfF/AfA = 0 is excluded. 

For practical application, equation (27) can be rewritten in a more convenient form 
that relates the filter bandwidth to the measured bandwidth. Then 

where is the ratio of the true damping to  the measured value. The curve for equation 
(28) is plotted in figure 5 and can be used to correct measured damping factors. As an example 
from the curve, the error in the uncorrected measured damping factor will be less than 14% if 
the filter bandwidth is less than half of the measured resonance half-power bandwidth. 

From figure 5, it is obvious that the narrower the filter bandwidth, the smaller the error 
in the damping factor. However, there are other constraints on the filter bandwidth, the 
most important of which is the statistical confidence in the data. The statistical reliability of 
a spectral measurement can be defined in terms of the normalized standard error E = 1 /,/w 
where T is the total sample length. Thus, for a constant value of e, or statistical reliability, the 
total sample length must increase when the filter bandwidth is decreased. In practice, the true 
bandwidth of the resonant peak will not be known until measurements have been made. Thus, 
some form of iteration will be necessary in the selection of the filter bandwidth. The filter 
bandwidth will also have to  be a compromise between the resolution and statistical confidence 
requirements. 

Additional discussion of the sample length will be presented in section 7.0, along with 
other requirements on data analysis procedures. However, it can be noted at this stage that 
the finite filter bandwidth problem is analogous to  the truncation errors associated with 
some of the other methods. 



4.1.6 Drift in Natural Frequency 

A vibrating thin panel will generate heat due to  internal dissipation of energy and will 
cause temperature changes in the panel. The panel is generally surrounded by relatively thick 
supports that will experience much smaller temperature changes. The differential tempera- 
ture will cause thermal stress in the panel, and the resonance frequencies of the panel will 
change accordingly. Such a drift in natural frequency was noted by Wilby (ref. 12) and was 
also observed in the demonstration experiments of the present investigation. An exhaustive 
investigation of such a phenomenon should include considerations of the thermal equilibrium 
and thermal stresses of the panel and their effects on the vibration characteristics of the panel. 
Such a complete investigation is beyond the scope of the present project and, instead, an 
intuitive, workable model is presented here for investigation of the effect of drift of the 
resonance frequency on the measurement of damping. 

A linear system with constant natural frequency will have a frequency response function 
Ha@) that is independent of time. Drift in the natural frequency w, will give a time-varying 
frequency response function &(w,t). The effect of such a drift can be easily observed 
experimentally using discrete frequency excitation. When the panel is excited by a constant- 
frequency pure tone, the drift in natural frequency will give a change in vibration amplitude 
at the excitation frequency. When random excitation is used, the response amplitude will 
have random phase that will mask the change in amplitude due t o  the drift in natural fre- 
quency. Thus, the presence of drift in natural frequency will not be readily detected when 
using random excitation. For a time-invariant system (as shown earlier), the response power 

2 spectral density function will be proportional to (H,(w)l , whereas, for a system with time- 
varying frequency response function Ha(w,t), the response power spectral density function 
will be ro ortional to  the time-averaged (or mean) square of the frequency response func- -+ tion I H,(w)l . 

where T is the data sample length. 

Let w ' denote the equilibrium (time-independent) resonance frequency of the system. o! 
Then the drift in natural frequency can be represented as 

where 

wf(t)  << wfa for all t .  

Substituting w (t) in the frequency response function and neglecting terms of the order 9 (w'(t)12 and h~gher, 



where 

As an example, IH,(u,~)J~ has been estimated for the following form of wl(t) 

wl(t) = wo - k t  e for t.0 

= 0 for , t < O .  

Assuming small damping factors, 

where I Ha(w)12 = I / (M~;?A) = square of the amplitude of the equilibrium frequency 
response function and error el =(I /kT)loge [(A + B + Bwo)l . 

Substituting for B and A in the expression for €1, it can be seen that the error depends 
on kT, nondimensional frequency drift wlwh , and the damping factor tor. The error €1 is such 
that, in general, drift in the natural frequency will produce an average frequency response 
function with a bandwidth that is wider than that for the corresponding time-invariant fre- 
quency response function. 

In practice, the error can be reduced by minimizing frequency drift using two approaches. 
First, by keeping panel deflection at the smallest possible level, the heat generated in the panel 
and the frequency drift can be kept to a minimum. Second, the thermal time constant of the 
panel can be reduced by blowing low-velocity air over the panel. This is equivalent to increas- 
ing kT in the above discussion. 

4.1.7 N-Point Measurements 

In general, the power spectral density method of determining damping factors uses a 
single measuring location. The problem of off-resonant vibration in adjacent modes, and 
background noise, could be alleviated by the use of several measuring transducers that record 
the response simultaneously. 

The displacement cross-power spectral density of an L-degree-of-freedom system can 
be written as 



where 

* 
rmn(m) = Hn (a)Hm(a)Imn 

and Imn is defined as in equation (1 8). 

i j In equation (30) sWIJ p SW(5 ,x_ ,w) and $nj nj' $n(n($). 

Now, A:. is a unitary matrix such that 
U 

where 

where 

Spq = 1 for p = q 

= 0 for P # q. 

Multiplying the right side of equation (30) by the appropriate unitary matrix, 

For a single-degree-of-freedom system, 

and equation (33) reduces to  

For a general case where rmn can be represented by sum of L modes (corresponding 
to L degrees of freedom), 



If the response is now measured at only N different positions, the cross-power spectral 
density functions can be represented by an [N x N]  matrix, i.e., the measuring system will 
allow only N degrees of freedom and there are only N distinct values of qpp3s. Thus, from 
equations (35), (36), and (37), the following conclusions can be drawn: 

a) For L = 1, all the power will be concentrated in only one mode. 

b) For L Q  N, one can separate the power in each mode. 

c) For L > N, the scheme will fail to separate contributions from different modes. 

It should be noted that power q represents the sum of the response power spectral 
densities in a particular mode at the 8!neasuring locations. In practice, in a given frequency 
range, there are only a few modes with significant contributions. Thus, the condition L g N 
can be effectively satisfied. In practice, with the advances in digital data processing, the 
response power spectral density matrix can be calculated readily. The matrix diagonalization 
can be achieved easily with the use of a computer. 

The method appears to  have certain advantages for resolving close natural frequencies 
and damping factors in the presence of high background noise. For all other applications, the 
method is considered to be unduly complicated when compared with the single-point 
measurement of the power spectral density method. 

4.1.8 Summary 

The basic characteristics of the displacement power spectral density method for damp- 
ing measurement have been discussed with particular reference to a panel exposed to a mov- 
ing airstream. In principle, the method is straightforward, requires no excitation other than 
the turbulent airflow, and has no instrumentation requirements other than those normally 
associated with the measurement of panel response to turbulent airflow. However, there are 
a series of problems in practice-statistical coupling, off-resonant vibration, background noise, 
filter bandwidth, and drift in the natural frequency-that have to be evaluated with respect 
to other methods. 

The influences of these problem areas on the accuracy of the damping measurements 
have been discussed, and methods of alleviating the problems have been proposed. Suitable 
positioning of the measuring transducer can emphasize the vibration in the mode of interest, 
and errors caused by background noise and filter bandwidth can be corrected by the use of 
appropriate correction charts. For optimum location of the transducer, some initial knowledge 
of the panel mode shapes is required. This is not difficult for laboratory structures but may 
pose problems for large, complicated structures of typical aerospace construction. 



In general use, only the response power spectral density is measured. This is adequate if 
the excitation power spectral density is constant (or approximately constant) in a frequency 
range close t o  the natural frequency of interest, but measurements should be made of the 
pressure field to  confirm the assumption. 

The use of a multipoint measuring array has been proposed as a way of reducing the 
effects of background noise and close natural frequencies. However, the use of such arrays 
involves considerable analysis problems that detract from the value of the method for general 
application. 

One problem, the drift of panel natural frequencies, is really a problem of the test speci- 
men rather than the analysis method. The drift would introduce measurement errors in all the 
test methods and the only satisfactory solution lies in the correct design of the experiment. 

4.2 RESPONSE AUTOCORRELATION FUNCTION 

4.2.1 Introduction 

The response autocorrelation method uses the decay rate of the autocorrelation function 
as a measure of the damping of the system. Thus, the approach is similar to the deterministic 
method where the damping is estimated from the reverberant decay of the vibration when the 
excitation is removed. For the ideal case of a single-degree-of-freedom system, the method 
has obvious practical value, but for multimodal systems, such as a panel, the method has 
several limitations. These limitations will be discussed in the analysis where it will be assumed 
that the vibration of the panel results from exposure to the airflow and that no secondary 
excitation is intentionally introduced. 

4.2.2 Basic Analysis 

The basic theoretical analysis for a rectangular panel exposed to  random excitation, 
particularly that due to  a turbulent boundary layer, has been discussed in detail by Rechtien 
(ref. 13) and Wilby (ref. 6). Consequently, the present analysis will provide only an outline 
of the method. 

The displacement autocorrelation function for the panel has been shown in equation (14) 
to be 



The integration with respect to w can be performed by contour integration, provided 
that S (xt,x" ,a) is of order less than w3. When T 3 0, P -  - 

where 

Sp(x ',g " ,ad + iw, 2,) = sar - is, i 

-%, - -"'xi 
sin 'g - IDaPl cos g - 

'yo IDolpl 

and wd = ' J , J z -  is the natural frequency for damped free vibrations. 

To advance further, assume that the damping is small so that o, 5, << a d  and 
Sp(x1,~",wd + i o ,  t,) can be replaced by Sp(xl,x", ad).  Then S d  becomes Cp(zt,x_", wd) 
and s,' becomes Qp(x_',xl',wd), where 

Sp(xl,x",w) = Cp(x1,5 *,a) -iQp(xt,z ",a). 

Also, since, by definition, the autocorrelation function is symmetrical about T = 0, the solu- 
tion to equation (38) can be extended to  include all T if T is replaced by171 in equation (39). 
Thus, 

I 
+ Qp(xl,x",qd) cos(ad l~ l+  19 ) dx'dx* - - 

for all T. 



It has been shown (ref. 6)  that 

so that 

for all 7. 

Equation (40) shows that the response autocorrelation function for the panel displace- 
ment is a sum of contributions from all normal modes plus additional cross terms associated 
with the statistical coupling of the modes. Some simplification has to  be achieved before the 
method has a reasonably practical form. 

From (ref. 6), when the natural frequencies are well separated and the damping is small 
({, << l ) ,  the cross terms can be neglected. When the natural frequencies are close together, 
the conditions for small cross terms are more difficult t o  establish but are similar to  those 
associated with the displacement power spectral density function. 

Neglecting cross terms equation (40) becomes 

From equation (41), the autocorrelation function is a sum of the contributions from the 
different modes and it is difficult to estimate the damping coefficient unless the vibration due 
t o  one mode can be isolated. This can be achieved to  a certain extent if the natural frequencies 
are widely separated and the vibration in the vicinity of one natural frequency can be effec- 
tively isolated by filtering. The integral term in equation (41) is the joint acceptance term in 
equation (1 7) for the displacement power spectral density function. 



If the vibration for one mode can be isolated, then the autocorrelation function becomes 
an exponentially decaying sine function where the decay rate is proportional to  the damping 
and the sine function has a nonzero phase angle. For small damping 8,, = n/2. 

From equation (4 l) ,  the autocorrelation function for a single-degree-of-freedom system, 
such as a dashpot, is 

4.2.3 Multimodal System With Close Natural Frequencies 

The autocorrelation function R W ( ~ , r )  for a multimodal system has been obtained in 
approximate form in equation (41) where the cross terms (a # P) have been neglected. When 
a single mode can be considered alone, the autocorrelation function can be used to  calculate 
the modal damping, but when there are two or  more modes with close natural frequencies, 
modal isolation is not possible. 

Consider the case of two modes of a panel where the natural frequencies are closely 
spaced. Using the approximate form for the displacement autocorrelation function (equation 
(41)), the autocorrelation for the two modes can be written as: 

where 

and 

Similar definitions hold for A and wdp P 
To illustrate the relative importance of coefficients A and A , assume that 8,, = 8pp = 8 " for closely spaced modes since it is unlike1 that the damping o f t  e two modes will differ by 

a large amount (On, = tan-1 [( 1 - h2 fh/{J). Then, for T Z 0, equation (43) becomes 

where A,and A are always positive. P 



Letting wdP = wd, + a ' ,  then 

where tan$(?) = (APsinw'r)/(A, + A coswlr). P 
Thus, $(T)  acts as a varying phase angle and 2A,Apcoswtr causes beating of the ampli- 

tude of the autocorrelation function, varying from A, + Ap t o  A, - Ap. The maximum error 
in the autocorrelation amplitude will be *AP. These results are similar to those of White (ref. 
14) for the impulse response function. 

To demonstrate the effect of close natural frequencies on the displacement autocorrela- 
tion function, equation (43) has been evaluated for two modal pairs of a 30.48- by 1 7.78- 
by 0.102-cm (1 2- by 7- by 0.04-in.) simply supported panel exposed to  Mach 2.0 airflow and 
a boundary layer displacement thickness of 0.589 cm (0.232 in.). The method of reference 6 
was used to calculate the terms A, and A . In one example (fig. 6), the mode pair is a= (3,1), P p =(1,2) and the damping is assumed to be 5, = 0.007 = 5 For the second example (fig. 7), 
a = (2,2), P = (4,1), and the damping is again {, = 0.007 = CP. The data in figures 6 and 7 are 
plotted in terms of the normalized autocorrelation function or autocorrelation coefficient, 
and the autocorrelation curves are compared with the corresponding curves for mode a alone. 

Figure 6 clearly shows the beating between the contributions from the two modes, and 
experimental data of this type would indicate the presence of more than one mode. However, 
in figure 7, for the time-delay range shown, the beating phenomenon is not evident, and 
experimental data in this form could be interpreted as being associated with a single heavily 
damped mode. Thus, it is essential that, for proper evaluation of the data, the maximum time 
delay rm in the autocorrelation function must be sufficiently large to  indicate the presence of 
more than one mode. To identify one period in the beat signal, rm must be greater than 
2r /wt .  In figure 6, 27r/wf = 12.45 milliseconds, rm is 17.3 milliseconds, and the beat can be 
identified. In figure 7, 27r/w1 = 22.57 milliseconds and rm is 12.6 milliseconds, so the beat 
cannot be identified. 

In practice, the dominant factors in the coefficients A, and A will probably be the P. . 
mode shape functions $,(z) and $o(x), and choice of measuring position 5 will have an 
important influence on the form of the autocorrelation function. For the examples in 
figures 6 and 7,  a location x l  = 5.08 cm (2 in.), x3 = 4.45 cm (1.75 in.) was chosen. 

4.2.4 Band-Limited Signal 

For the multimodal system, it has been shown above that the presence of more than one 
natural frequency has a distorting effect on the single-mode autocorrelation function. Even 
in the case of two modes, the distortion can cause large errors in the damping estimates. 

In practice, the effects of neighboring natural frequencies can be minimized by the use 
of filters, although this method has very limited application. The filters exclude vibration at 
frequencies away from the natural frequency of interest and should have steep cutoff 



characteristics. However, since the filters cannot exclude off-resonant vibration contributions 
at the natural frequency under investigation, they can be used successfully only if the ratio of 
resonant to off-resonant vibration is large. The use of filters may introduce adverse effects on 
the autocorrelation function if the bandwidth is too narrow. Thus, an optimum filter band- 
width has t o  be selected. 

The effect of filter bandwidth on the autocorrelation function of the mode of interest 
can be investigated using a single-degree-of-freedom system as the model. The narrowband 
vibration signal could be the result of introducing a band-pass filter in the excitation or in the 
response. If the narrowband autocorrelation function is denoted by RW(r; Aw), then 

Rw(r; Aw) =$w@(w)~~OI(w)~2~p(~)ei~~dw0 -00 

The function @(w) represents the filter, and, for a rectangular filter, 

@(a) = I  q c l w l e J 2  

= 0 elsewhere. 

If it is assumed that, within the filter bandwidth, the excitation pressure power spectral 
density function has a constant value S then equation (45) reduces to  P' 

00 

R,(T; ~ w )  = sp $ @ ( w ) l ~ ~ ( a ) I  2,iwrdw 
-0 

Evaluation of the integral in equation (47) is discussed in appendix A. 

The problem is similar t o  that discussed by Kandianis (ref. 15) for the excitation- 
response cross-power spectral density method. Using the approximations of Kandianis, the 
presence of the filter modifies the autocorrelation function by the addition of terms that 
include functions of the form (cosw2r)/r and (sinw2r)/r, which decay rapidly as ~increases. 

4.2.5 Background Noise 

Background noise can occur either as an additional excitation or as electronic noise in 
the equipment used t o  measure the vibration. The effects of the noise signals on the response 
autocorrelation function for a single-degree-of-freedom system have been discussed by 
Kandianis (ref. 16) and the results can be incorporated in this discussion. 

Considering first the excitation, assume that a second signal p2(t) is superimposed on 
the initial signal p l ( t )  and that the two signals are mutually uncorrelated. Then, from equa- 
tion ( 1  6), the response autocorrelation signal is 

moo 

R,(T) = $ o I o h(rl )h(r2) LRPl (T + '1 - 9 )  + R ~2 (r + 71 - r2)l dr2drl. (48) 

Thus, the displacement autocorrelation function for the noise-free excitation, equation (16), 
is modified by the addition of the noise autocorrelation function to  the pressure autocorrelation 



function. The change, as expected, is a parallel of the effect demonstrated in equation (21) 
for the displacement power spectral density. 

If the signals p l ( t )  and p2(t) represent white noise, 

Rp1(7j = 2nSp16(7), 

Rp2(7) = 2sSp26(7), 

and 

In equation (49) Spl is replaced by [Spl + S 1, which has the effect of simply magnifying 
the autocorrelation function. 

~2 

As an alternative to  equation (48), the autocorrelation function can be written in the form 

where there are now no restrictions on the excitation power spectral density functions, and 
[S (a) + Sp2(u)] replaces the term Spl(w) found in the noise-free equations. P 1 

Referring now to  the multimodal system associated with a panel and assuming that the 
statistical coupling cross terms can be neglected as in equation (41), the effect of the second 
(noise) excitation is determined by the real part of the cross-power spectral density function. 
Using equation (41) as the reference, the integral 

associated with the noise-free case, becomes 

4 4 dla(,cxl, dlacx")rcpl(xl, x N ,  u )  + Cp2(z1, I * ,  4 1  dx'dx* 

when noise is present in the excitation. Here the effect of the noise signal depends not only 
on the power spectral density, but also on the spatial correlation in relation to  the mode 
shapes of the panel. The function Cp2(g1, ,cxm,u) represents the real part of the complex cross- 
power spectral density function associated with the noise signal. 

When noise is present in the response system, there will be no influence on the panel 
vibration, and the noise will appear as an additional term in the autocorrelation function. If 
Rn(7) is the autocorrelation function associated with the noise in the response system, and if 
the autocorrelation function for the vibration is denoted by RW1(~) ,  then the measured auto- 
correlation function will be 



If the noise signal n(t) is broadband white noise with power spectral density Sn, then 

where 6(r) is the delta function. Therefore, the measured autocorrelation function differs 
from the noise-free correlation only when T = 0, a t  which time delay the noise introduces a 
delta function spike. 

In practice, it is more likely that the noise will resemble band-pass noise rather than 
wide-band noise. The autocorrelation function then becomes 

sin 0 2 7  sin 0 IT 1 , 
where 0 2  and 01 are the upper and lower cutoff frequencies, respectively, for the band-pass 
filter. If noise of the type represented by equation (53) is present in the measurements, it 
will be difficult to  make suitable corrections t o  the data. Thus, if Rn(r) is a significant fraction 
of RW(r), the damping measurements will show appreciable errors. 

4.2.6 Summary 

The response autocorrelation method involves analysis of the vibration in the time do- 
main, and this results in additional complications when compared with frequency domain 
analyses. Analyses of the basic characteristics of the method show that severe problems will 
occur in practice unless the natural frequencies of interest are well separated. In such cases, 
the vibration in the neighborhood of a given natural frequency is due essentially to only one 
mode. Unfortunately, these very restrictive conditions are satisfied by very few modes of a 
structure, even a simple panel. 

In an attempt to isolate the vibration of one mode, the use of band-pass filters has been 
suggested. Here a compromise has to be reached so that the filters have a bandwidth wide 
enough not to distort the results for the mode of interest, yet narrow enough to  exclude 
vibration from other modes. Irrespective of filter characteristics, they will not exclude off- 
resonant vibrations within the band-pass frequency range. Thus, the filters are of little use 
unless the resonant vibration is large with respect t o  the off-resonant vibration. 

Background noise, either in the excitation or  the response, can cause errors in the damp- 
ing measurements. This is particularly true if the noise is in the response signal. However, if 
the noise in the excitation has a constant power spectral density within the frequency range 
of interest, the associated errors in the measured damping will be negligible. 



4.3 EXCITATION-RESPONSE CROSS-POWER SPECTRAL DENSITY 

4.3.1 Introduction 

The excitation-response cross-power spectral density method was proposed by Clarkson 
and Mercer (ref. 17) and is the stochastic equivalent of the response amplitude phase method 
(see Kennedy-Pancu, ref. 4) for discrete frequency excitation. Phase information, which is 
not used in the response power spectral density or autocorrelation methods, is used in the 
cross-power spectral density approach. Therefore, at least in principle, the method is 
capable of separating contributions from off-resonant modes and background noise. However, 
in practice, several limitations are imposed on the method, and these limitations are discussed 
in this section. 

When studying structural response in the presence of an airflow, a severe limitation 
arises because of the inability to  measure the excitation and response fields simultaneously. 
Introduction of a microphone would disturb the flow field or  require modifications to  the 
structure. Thus, it is necessary t o  provide a second excitation that can be used as a reference. 
The pressure field due to  the airflow then takes on the role of unwanted noise as far as the 
damping measurement technique is concerned, and the problem of signal-to-noise ratio 
becomes very important. 

4.3.2 Basic Analysis 

The basic analysis for the method will be performed under the assumption that there is 
only one excitation present, and this excitation will be used as the reference signal. Thus, 
the system is identical t o  that shown in figure 1a.where the excitation signal is p(xl,t) and 
the response of the system is denoted by w(5 ,t). I t  is assumed in the analysis that the excita- 
tion is applied a t  a single point rather than being distributed over the panel, but this assump- 
tion is not necessary in general. The cross-power spectral density function relating the excita- 
tion and response can be represented by the equation: 

S (x, x', o )  = W(5, o) P*(xl,o), W,P - - (54) 

where W(5, o) and P(xf, o )  are the complex Fourier amplitudes of w(5, t) and p(x_', t )  
respectively, and the asterisk denotes the complex conjugate. From equations (8), (9), (1 O), 
and (1 1), 

Substituting for W(x,a) - in equation (54), 

where S (o j  is the power spectral density of the pressure signal a t  5'. P 



The right side of equation (55) indicates that the cross-power spectral density function, 
which is complex, depends on the frequency response function H,(o), the mode shapes 
$,(x) of the panel, and the excitation force. The two mode-shape terms will give a multi- 
plying factor that determines the efficiency with which the vibration is being excited and 
measured. For example, if the point of excitation and the location of the measuring probe 
are at antinodes of the mode being measured, then $,(x') = $,(:) = 1 and the measured 
cross-power spectral density function will be a maximum for a given excitation force. 

Conversely, if the exciter or measuring transducer is located at a node of a given mode, 
then no vibration will be recorded in that mode. These properties are valuable in practice for 
augmenting or suppressing the response in a particular mode. 

If an excitation force with constant spectrum level is used, then S (w) will be independent P 
of o and the excitation-response cross-power spectral density function will be directly pro- 
portional to the sum of the frequency response functions of all modes. Comparing equation 
(55) with equation (20), note that the cross-power spectral density function does not contain 
the double summation present in equation (20) for the response power spectral density func- 
tion. Cross terms that arise from the statistical coupling in the power spectral density function 
are absent in the excitation-response cross-power spectral density. However, the frequency- 
dependent term HJw) will still impose filter bandwidth requirements if adequate resolution 
is to  be achieved in the data reduction of the cross-power spectra. 

At some stages in the subsequent analysis, it will be convenient to  refer to  the non- 
dimensional cross-power spectral density function r w , p ( ~ ,  x', a ) ,  which is defined as 

The function I'w,p(x,z',o) is a measure of the coherence between the excitation and response. 

For a single-mode system, the dimensional and nondimensional cross-power spectral 
density functions for a single excitation and the associated response are 

and 

Since Sw(x,o),, the displacement power spectral density in mode a ,  is proportional to  
I~,(w)l2, then rw,p(x,x', o )  is proportional t o  H,(o)/lH,(o)l. 



4.3.3 Background Noise 

As stated earlier, one important problem when applying the excitation-response cross- 
power spectral density method to a panel exposed to  turbulent airflow is the difficulty in 
measuring the excitation. T o  overcome this problem, the introduction of a second excitation 
has been proposed (refs. 6 and 18) as the reference signal. The system then resembles that 
shown in figure l b  where the boundary layer pressure field pl(xf, t)  is regarded as undesirable 
noise and the signal p2(xW,t) becomes the reference signal. 

The modified cross-power spectral density function can be determined following the 
approach of section 4.3.2, except that the panel total displacement now depends on two 
excitations, only one of which (p2) is being measured. If p l (xf , t )  and p2(xN,t) are assumed 
to  be statistically independent, the nondimensional cross-power spectral density function 
for a single mode becomes . ,e 

2 When [ A ~ S ~ ~ ( ~ ) J ~ , ( ~ ) / ~ I  is much smaller than [$, (~")SP2(w)], which means physically 
that the panel vibration is due mainly to  the introduced excitation p2(xn,t), then 

W , P ~  (x,x",w) in equation (59) tends to  the noise-free form in equation (58). 

If noise n(t) is introduced into the response, as indicated in figure lc ,  and n(t) is 
assumed to  be uncorrelated with the vibration w(x,t) and the excitation p2(xM,t), then the 
measured nondimensional cross-power spectral density function for mode a will be given by 
the expression 

Equations (58), (59) and (60) all have the same numerator which, apart from the omis- 
sion of a factor [S  ?(a)] {I2, is the dimensional cross-power spectral density function relating 
excitation p2(l",tfand panel displacement. The differences between the three equations occur 
in the denominator which, in the form shown, is the square root of the response power spectral 
density. Since the addition of noise in the excitation or response increases the measured 
response power spectral density, the nondimensional cross-power spectral density decreases 
as the noise increases. 

The decrease of I', 2(x, If, a), as the noise increases identifies an important problem 
area for the case of a excited by a moving airstream, namely, the accurate measurement 
of small correlation coefficients or functions obtained from large signals. To perform the data 
analysis with sufficient accuracy, it is necessary that the data reduction system should have 
high amplitude resolution and large dynamic range. For a given instrument system, the 
dynamic range will be constant and the maximum signal will be determined by the vibration- 
plus-noise signal. Only a small fraction of this signal will be correlated with the excitation 
reference, thereby creating a signal processing problem. 



4.3.4 Multimodal System 

The excitation-response cross-power spectral density function for a noise-free, multi- 
modal system is given in equation (55) as 

Comparing this equation with the corresponding equation for the displacement power spectral 
density function (equation (20)), the main advantage of the cross-power spectral density can 
be identified. 

In equations (20) and (61), the value of the function at a given frequency is determined 
by a summation over all modes. For the power spectra, each modal contribution is propor- 
tional t o  the real function I H & ~ ) I ~  and is added algebraically to the other contributions. In 
contrast, the modal contributions to the cross-power spectral density are proportional to  the 
complex function Ha(@ and are summed vectorially. The vectorial addition is the direct 
equivalent of the Kennedy and Pancu method (ref. 4), and permits separation of the resonant 
vibration from the off-resonant/noise components. This identifies the advantage of the cross- 
power spectral density method. 

From equation (61), if Sp(o) is essentially constant, the locus of the measured cross- 
power spectral density function will be a constant multiple of the frequency response func- 
tion obtained from the Kennedy and Pancu method with discrete frequencies. Properties of 
the frequency response functions discussed in section 3.3 will be equally applicable t o  the 
cross-power spectra, and resonance circles can be drawn as an aid to  the measurement of modal 
damping. This technique corrects for the presence of off-resonant and noise contributions. 

The nondimensional cross-power spectral density function for the multimodal system 
can be obtained by following the procedure outlined in section 4.3.3 and using equation (61). 
The nondimensionalizin factor [S  (a) Sw(x,o)] 'I2 in equation (58) will be replaced by 

113 P [Sp(a) & Sw(~,o) , ]  , thereby reducing the value of the nondimensional cross-power 
spectral density function. 

4.3.5 Filter Bandwidth 

The fundamental quantity being measured in the cross-power spectral density method is 
the frequency response function H&(o). Thus, one of the problems in the data reduction will 
be the loss of resolution due to  the finite bandwidths of the analyzing filters. Essentially, the 
problem is similar to  that encountered in the power spectral density method. In practice, 
the cross-power spectral density function can be determined in two ways that will be referred 
to as the direct and indirect methods. If digital techniques of data analysis are used, the 
direct method indicates that the Fourier transforms (or complex Fourier amplitudes) of the 
time series are computed and multiplied together to give the cross-power spectral density 
function. The indirect method first computes the excitation-response cross-correlation func- 
tion and then Fourier transforms the correlation function to obtain the cross-power spectral 
density function. Again, referring t o  digital techniques for data analysis, the filter bandwidth 
is relatedto the data sample length for the direct method or maximum delay time for the 
indirect method. 



Considering first the direct method, the filter bandwidth requirements can be established 
using the discussion in section 4.1.5 as a guideline. For a filter with rectangular characteristics, 
the error in the damping measurements obtained from the power spectrum is shown in figure 5 
as a function of filter bandwidth and measured half-power bandwidth. In practice, the filter 
characteristics in the direct method will be determined by the presence, or absence, of data 
smoothing but will differ from the ideal rectangular shape. Filter bandwidth is discussed further 
in section 7.0. 

The filter bandwidth problem for the indirect method has been discussed by Clarkson 
and Mercer (ref. 17) and Soovere and Clarkson (ref. 19) in terms of truncation, which is the 
equivalent time domain problem. As will be seen in section 4.4, truncation problems occur 
also in the single-sided Fourier transform method. 

In the indirect method, the theoretical excitation-displacement cross-power spectral 
density function Sw, (5, x_', w) is obtained as the Fourier transform of the cross-correlation 
function R (x,xl,rf, where W,P 

However, in practice, it is not possible to  measure Rw,p(x,x',r) for an infinitely long time 
delay, and the function must be measured for a'finite range, say -rm g T <  7,. The computed 
cross-power spectral density function is then 

where D(r) is a weighting function, or lag window, such that D(r) = 0 for 171 > r,. 

Alternatively, 

where 

and is called the spectral window. @(w-w') represents the filter characteristics referred t o  above. 

For the case of single-point excitation, as considered in section 4.3.2, and assuming 
constant excitation spectral density, equation (64) can be written in the form 

The form of the lag window D(T) can be selected from several standard representations. 
Clarkson and Mercer (ref. 17) selected the rectangular lag window 

D ( r ) = l  l r ( a T m  

= 0 elsewhere. 



As a modification, Soovere and Clarkson (ref. 19) use the Bartlett triangular window, 

D(r) =l-g [r11crm 
m 

= 0 elsewhere 

since this is more reliable, statistically, than is the rectangular window. In both cases, the 
effect of truncation is determined with respect to  the parameter (l/p)(ds/df) where p is the 
radius of curvature of the cross-power spectral density curve at resonance and ds/df is the 
rate of change of arc length with frequency at resonance. Assuming small damping, fa2 << 1, 
Clarkson and Mercer (ref. 17) show that 

and a similar equation is derived by Soovere and Clarkson for the triangular lag window. Curves 
of (l/p)(ds/df) as a function of a,{, and rm can be used as a means of correcting for trunca- 
tion (or filter bandwidth) errors. .Examples of such curves for the rectangular and triangular 
lag windows are contained in figure 8. The curves show that, for a given maximum time delay 
rm, the error created by the rectangular lag window is less than that due to  the triangular 
window. This is expected since the equivalent bandwidth of the triangular lag window is 
larger than that of the rectangular window, for a given value of rm. The advantage of the 
triangular window lies in the improved statistical reliability. 

Some simplification of the curves is possible if it assumed that the filter bandwidth AfF 
is a fraction of the resonance bandwidth Afa, i.e., 

From reference 20, the effective filter bandwidth for the rectangular lag window can 
be taken as 

Then 

and 

where 



The curve for q ( n )  is shown in figure 9. At low values of Afa/AfF (less than 3), the 
curve for q ( n )  indicates larger errors in the damping measurement than are predicted by 
figure 5 for the rectangular filter. 

The above discussion on truncation errors has assumed that the instrument is ideal in that 
there are no dynamic range or noise problems. In practice, there will be a dynamic range prob- 
lem when the time delay exceeds a certain value that will depend on the equipment. Any cor- 
relation information obtained for time delays in excess of the critical value will be spurious, 
and the critical time delay will determine the maximum useful time delay. 

4.3.6 Summary 

In concept, the excitation-response cross-power spectral density method has several 
highly desirable features that result from the inclusion of phase information. Using the excita- 
tion force as a reference, the response vector diagram can be drawn and the effects of back- 
ground noise and off-resonant vibration minimized. Additional benefits arise if the point of 
application of the excitation can be varied, thereby suppressing vibration in certain modes. 

When the method is applied to the case of structural response to  a moving airstream, 
measurement of the excitation force becomes a significant problem. If the aerodynamic pres- 
sure field is used as a reference, a measuring transducer has to be located in the airstream or in 
the surface of the structure. In either case, the experimental environment would be changed. 
As an alternative solution, a second excitation can be introduced to  act as the reference, and 
the boundary layer excitation then takes on the characteristics of unwanted noise. However, 
under these circumstances the problem of signal-to-noise ratio becomes important. The vibra- 
tion induced by the second excitation has to  be significantly greater in amplitude than that 
induced by the aerodynamic pressures if reasonable accuracy is to be achieved in the damping 
measurements. To satisfy this requirement, the second excitation force must be large, with 
resultant dynamic range problems in the instrumentation. If the test panel is enclosed by a 
pressure equalizing chamber, difficulties may arise in locating the exciter within the chamber. 

4.4 RESPONSE SINGLE-SIDED FOURIER TRANSFORM METHOD 

4.4.1 Introduction 

The important characteristic of the single-sided Fourier transform method is that it uses 
phase information that is hidden in the power spectral density and autocorrelation function. 
The method was introduced by Kandianis (ref. 16) as a means of reducing the effects of noise 
interference in the analysis of transient signals. However, the theoretical background applies 
strictly to stationary signals and, for simplification, the characteristics of the signals are usually 
assumed t o  be those of white noise. 

In operation, the method computes the response autocorrelation function, either directly, 
or indirectly via the power spectral density function, and then performs Fourier transformation 
on half of the autocorrelation function (e.g., for T >0). The resulting single-sided Fourier 



transform is a complex function of the frequency response function H(a), and the damping 
can be estimated from the complex plane diagram in a manner similar to  that developed by 
Kennedy and Pancu (ref. 4) and used in the excitation-response cross-power spectral density 
method (sec. 4.3). 

Discussion in this section will be concerned with vibration induced by random excitation 
such as the turbulent boundary layer. Application of the method to  transient excitation 
techniques where a second excitation is introduced will be discussed later in section 5.0. 

4.4.2 Basic Analysis 

The basic properties of the method can be demonstrated most easily by a single-degree- 
of-freedom system. The displacement autocorrelation function for such a system has the form, 
from equation (42), 

Then the single-sided Fourier transform is defined as 

Substituting equation (70) in equation (7 l ) ,  Fw(a) can be evaluated using standard 
integrals, and 

As expected from general principles, the real part of Fw(w) is .half of the displacement 
power spectral density function and is proportional to  IH,(u)(~. Thus, the real part can pro- 
vide estimates of the damping in precisely the same way as in the power spectral-density 
method. However, the advantage of the method lies in the combined use of the real and 
imaginary parts in the form indicated by equation (72). 

The locus of H,(w) in the complex Argand plane has been discussed in section 3.3 where 
it was stated that H,(w) was a circle only for the case of hysteretic damping. For viscous 
damping, the frequency response function is approximately a circle in the neighborhood of 
the natural frequency when the damping is small. Similar restrictions apply to  the function 
Fw(o) of equation (72). 



Using the Kennedy and Pancu method (ref. 4), estimates of the .damping coefficient are 
obtained from the locations of the half-power points of I&(o). This is an approximation that 
is valid for light damping and it is again valid for the function F(o). To demonstrate the validity 
of the approximation, consider a parameter X defined by 

Then X can be assumed to  be equal to 2 (which gives the half-power law) within an accuracy 
of about Ca/2 for hysteretic damping and 3 5,/2 for viscous damping. In the case of the single- 
sided Fourier transform F(o), the error in X is approximately 2 ca. Thus, for the single-degree- 
of-freedom system, the single-sided Fourier transform and the excitation-response cross-power 
spectral density methods are closely allied. 

The single-sided Fourier transform method can be extended to  include the multimodal 
case typical of panel vibration by the use of equation (40). Substituting equation (40) in 
equation (7 1 ), 

where a d ,  Dap, sin eqO' and cos 8 are defined in section 4.2.2 for equation (39). "P 
Immediately obvious in equation (74) are the cross terms ( a #  p), which are absent in the 

excitation-response cross-power spectral density function but d o  occur in the power spectral 
density function. The joint terms ( a  = 0 )  pose no problem since they represent a sum of terms 
of the type ~ , ( 2 t ~  + io/o,)&(o) where the parameter Ka is a function of mode shape and 
measuring location and is independent of frequency o. Thus, for small damping, the locus of 
the joint terms can be analyzed in a straightforward manner using the complex Argand diagram 
and constructing resonance circles at the natural frequencies. The practical application of the 
method to  a panel excited by turbulent airflow depends on the magnitude of the interference 
from the cross terms. 

When the natural frequencies are well separated, the function(cos ) lDaPl is of order 
u ~ - ~  and(sin Og/)  ID,^( is of order Thus, if I, << 1, these 



considered small relative to  the joint term of order However, when the natural 
frequencies are close together, 8,p and Dap approach the corresponding joint term values 
8,, and D,,, and the influence of the cross terms will depend on the measuring location 5 
(through J/,(x), J/$&)), and the integral terms. 

4.4.3 Background Noise 

The effects of noise on the damping estimates obtained from the single-sided Fourier 
transform method have been discussed by Kandianis (ref. 16) for a single-degree-of-freedom 
system. From equation (SO), noise in the excitation, if it is uncorrelated with the excitation, 
is additive in terms of the power spectral density functions. Noise in the response, if it is 
uncorrelated with the response, is additive in terms of the autocorrelation function-equation 
(5 1). Translating these effects into the single-sided Fourier transform function of equation (72), 
then 

The presence of the noise p2(t) in the excitation increases the coefficient of H(w)(2{, + 
iw/oa) but has no influence on the damping estimates. Noise n(t) in the response signal shifts 
the plot of Fw(w) along the real axis. In principle, if Sn(o) is constant, the accuracy of the 
damping measurements is again unaltered, but, in practice, if n(t) is large so that the dynamic 
range constraints of the instrumentation become important, accuracy may be impaired. 
Further, if Sn(w) varies in the neighborhood of a natural frequency, additional errors will 
appear in the damping estimates. 

4.4.4 Truncation Errors 

Truncation errors, encountered when the excitation-response cross correlation function 
is transformed into the cross power spectral density function, are discussed in section 4.3.5 
as an equivalent of the resolution losses associated with finite bandwidth filters. The single- 
sided Fourier transform method is also susceptible to truncation errors associated with the 
transformation of the autocorrelation function. 

The truncation errors arise because it is not practical to  compute the displacement auto- 
correlation function for infinitely long time delays. Thus, equation (7 1) for a single-degree- 
of-freedom system becomes, in practice, 

where D(T) = 0 for T > T ~ .  



Equation (76) is the direct equivalent of equation (63) for the cross-power spectral 
density case. Since the correlation functions in equations (63) and (76) show some differ- 
ences, equation (76) will be evaluated for the case of a rectangular lag window 

= 0 elsewhere. J 
Assuming that the excitation has a constant power spectral density S and that the P' 

system is lightly damped such that ta2 << 1, then, from appendix B, 

Comparing with equation (68), it is seen that equation (78) contains an extra term 
~O1sinOO1~mcosOO1~m in the numerator and denominator. If it can be assumed that the damp- 
ing system is so small that 

then equation (78) reduces to  

which is identical to  equation (68). Thus, curves of the type shown in figures 8 and 9 can be 
used to  estimate the truncation errors in the single-sided Fourier transform method, although 
it should be remembered that the condition on the damping is now, effectively, fa << 1 
rather than fa2 << 1. 

In a similar manner, the truncation errors in the single-sided Fourier transformation with 
a triangular lag window will be approximately equal to  those predicted by Soovere and 
Clarkson (ref. 19) for the cross-power spectral density function (see fig. 8). 

4.4.5 Summary 

The single-sided Fourier transformation method operates on the response autocorrela- 
tion function in such a manner that hidden phase angle information is exposed. For the 
application considered in the preceding sections, the panel response is that due solely to  the 
aerodynamic pressure fluctuations; the introduction of a second excitation will be discussed 
in section 5.0. 



The ability to  use phase information places the single-sided Fourier transform in a similar 
category to  the cross-power spectral density method, without the need to  measure the excita- 
tion and response simultaneously. Both methods can make allowances for background noise 
and off-resonant vibration more easily than when only amplitude data are measured. In prac- 
tice, errors arising in the single-sided Fourier transform due to  noise, off-resonant vibration, 
and truncation effects will be similar to  those encountered in the cross-power spectral density 
method. Correction procedures developed for the latter method can be used for the single- 
sided Fourier transform although now the restrictions on small damping will be slightly more 
severe. 



5.0 NON-STEADY-STATE METHODS 

5.1 INTRODUCTION 

The category of non-steady-state methods includes quasi-steady-state and transient 
methods. Quasi-steady-state methods are usually associated with sinusoidal excitations,which 
are slowly swept through the frequency range of interest. Narrowband random excitation 
sweeps have been proposed for structural testing (refs. 21 and 22), but their application is 
mainly that of determining response amplitude rather than the measurement of damping. 
Recently, transient methods (refs. 23 and 24) have been proposed as replacements for the 
slow sweep rates when there is a need for a significant reduction in testing time. An example 
of such a test environment is the flutter testing of an airplane, where it is difficult t o  achieve 
stable flight conditions in some parts of the flight envelope. Development of the transient 
method has been carried out by White (refs. 14, 25, 26, and 27) and Kandianis (refs. 16 and 
28), the latter having utilized random analysis methods to reduce the errors from noise 
interference. 

With regard to  the current problem of damping measurement of panels exposed to  a 
moving airflow, the use of any non-steady-state method implies the introduction of a second 
excitation at a given point of application. This has the advantage of allowing selection of a 
suitable location for the excitation and alleviates to  some extent the effect of the cross terms 
of the type shown in equation (20) when a#P. The non-steady-state methods have a second 
common characteristic because, with the exception of the narrowband random noise sweep, 
which is not applicable to  the present problem, the excitation in all the above methods is 
deterministic in form. 

5.2 QUASI-STEADY-STATE EXCITATION 

The use of sinusoidal excitation in the experimental determination of the natural vibra- 
tion characteristics of a system has been a standard technique for many years. The technique 
involves a frequency sweep t o  determine the approximate locations of the natural frequencies, 
followed by a detailed frequency analysis in the neighborhood of each resonance. During the 
detailed analysis stage, the system is allowed to  achieve steady-state vibration at each fre- 
quency before recording the response and moving to  the next excitation frequency. Unfor- 
tunately, the method is very time consuming. The slow frequency,sweep method was there- 
fore introduced in an attempt to  speed up the process. 

In the slow frequency sweep approach the excitation frequency is slowly scanned through 
the range of interest, and it is assumed that the vibration attains quasi-steady-state conditions. 
Choice of the scanning rate depends on the natural frequencies and damping ratios of the 
system under investigation, and the assumption of quasi-steady-state conditions may not be 
valid in many cases. Several errors arise in practice. The response at resonance will be less 
than the steady-state maximum, and the frequency at which the maximum occurs is shifted 
in the direction in which the excitation frequency is changing. Additional errors are intro- 
duced by the averaging time of the function analyzer used t o  derive the vector diagrams. Back- 
ground noise errors, similar t o  those encountered in the steady-state sinusoidal method, will 
also be present. Thus, the method has very limited application in practice. 



5.3 TRANSIENT EXCITATION 

5.3.1 Single Pulse 

The frequency response function H(o), which is the basis for all the damping measure- 
ments, is the Fourier transform of the impulse response function. Thus, if the system under 
investigation is exposed t o  a unit impulse, the measured response will provide a direct mea- 
surement of H(o) and hence of the damping. In practice the unit impulse is not attainable 
because sufficient energy cannot be supplied t o  the system in an infinitesimal time period. 
However, an acceptable approximation can be achieved by the use of a single pulse of short 
duration. The use of such pulses has been discussed by White (ref. 25). 

To illustrate the single-pulse method, consider a single-degree-of-freedom system, with 
steady-state frequency response function H(o). If the excitation is p(t) and the response is 
w(t), then 

where P(w) and W(o) are the Fourier transforms of the transient excitation p(t) and response 
w(t), respectively, i.e., 

White (ref. 25) discusses several impulse shapes-rectangular, triangular, and trapezoidal- 
but, for current demonstration purposes, only the rectangular pulse need be considered. Then 

p(t) = A  O < t < T  
= 0 elsewhere, 

where T is the duration of the pulse, and 

In certain cases, when the duration of the pulse is short with respect t o  the shortest 
period present in the vibration of the system (ref. 25), only the response of the system need 
be analyzed without creating large errors in the measured values of the natural frequencies and 
damping ratios. However, it is difficult to determine the magnitude of the errors in advance, 
and in practice usually both the excitation and the response have to  be measured. A plot of 
W(o)/P(o) will represent the frequency response function (equation (go)), and estimates 
of the natural frequency and damping factor can be obtained using the Kennedy and Pancu 
method (ref. 4). 

Although simple in concept, the single-pulse method suffers from several disadvantages 
which limit its usefulness in practice. If the pulse is short, to  simulate an ideal impulse and 



excite a wide-frequency range, the energy of excitation and vibration at  a particular frequency 
will be low, and accurate measurements will be difficult. Secondly, it is difficult t o  control 
the frequency content of the excitation, with the result that many modes which are outside 
the range of interest may be excited while modes of interest may not be excited because of 
zeros in the excitation spectrum (see the above example). Thirdly, difficulties may arise in 
maintaining the pulse shape, thereby requiring measurement of  the excitation signal as well 
3s t11~ response. Finally, noise problems will severely interfere with the accuracy of  the results. 

5.3.2 Pulse Train 

As a modification of the single-pulse method, Reed e t  al. (ref. 23) have investigated the 
use of 3 series of rectangular and triangular pulses having a continuously decreasing time 
period. Reed e t  al. claim that the rectangular pulse train has a practical advantage over the 
triangular pulse train and the swept sine wave in that the rectangular pulses are simpler t o  
generate. However, the rectangular pulse train suffers from the disadvantage that the energy 
is spread over a large frequency range. Also, pulse trains in general present many of  the 
proble~ns associated with the single pulse. 

5.3.3 Rapid Frequency Sweep 

T o  ov&come the difficulties of frequency control, energy input, and pulse shape asso- 
ciated with pulse excitation, an alternative form of transient excitation, the rapid frequency 
sweep, has been introduced by Reed et al. (ref. 23) and Skingle (ref. 24), with further 
developnlents by White (ref. 14, 25, 26, and 27) and Kandianis (refs. 16 and 28). The  rapid 
frequency sweep is achieved by scanning a sine wave signal from frequency w l  to  w 2  in a 
very short time period T. In contrast t o  the slow sweep, quasi-steady-state conditions are not 
assumed, the response being considered as transient in nature. Obviously there are an infinite 
!lumber of ways by which the frequency can change from w l  to w2, but, for simplicity, a 
linear variation is considered here. Thus, the frequency of excitation can be represented by 
the equation 

w = a t  + w 1 O < t < T  

= 0 elsewhere. 

The excitation signal is then 

= 0 elsewhere. 

As is the case for the pulse methods, the excitation and response signals are deterministic, 
ant1 the steady-state frequency response function can be obtained by means of equation (80). 



The Fourier transform P(w) of p(t) is a complicated function, and the characteristics of 
the spectral amplitudes have been summarized by White (ref. 27). The spectrum amplitude is 
not constant within the frequency range w l  to 0 2  but has two peaks, one at a frequency of 
w 1 + 1.2 &n and the other at a frequency ofw2 - 1.2 &&!, The mean amplitude of the 
spectrum is .rr/20! and the height of each peak is 1.4 times the mean amplitude. Between the 
two peaks, the spectrum is oscillatory about the mean value, the amplitude of the oscillation 
being proportional to  1 / For given values of w l  and d 2 ,  a long duration time T can be 
selected so that the spectrum amplitude is large enough to  avoid problems of signal-to-noise 
ratio and to  reduce the spectral ripple to an acceptable value. The cutoff rate of the spectrum 
at w1 and w 2  is high. 

Instrumentation to  produce the rapid frequency sweep has been developed by White 
(ref. 27), and the modulus of the Fourier spectrum for the excitation shows characteristics 
similar to  those described above. The phase spectrum is very irregular. 

In practical applications, the transient method involves problems similar to  those 
encountered in the steady-state methods. This is not surprising, since the problems are all 
related t o  Fourier transformation of the impulse and frequency response functions h (T) and 
H (a) and t o  the presence of noise in the excitation and response signals. 

The resolution of close natural frequencies is one example of a common problem. In 
practice this has been interpreted as a requirement on frequency resolution in the power 
spectral density analysis, and as a specification of the maximum time delay for the autocor- 
relation function. For the latter case i t  was shown (equation (44)) that the displacement auto- 
correlation function for two signals Aa sin [wd7 + 81 and Ap sin [(wd + W')T +el was 

R (x,T) = ( A ~  + A2 + 2 A d  cos w 1 ~ ) l l 2  sin (wdr + 0 +)(T)) W - a P P 

Ad sin W'T 

tan = A,+ cos w ' r  ' 

and 

then 

White (ref. 26) has shown that for the corresponding impulse case, where the total impulse 
function is 

h(t) = h 1 (t) f h2(t) 

h l ( t ) = a l  sin w l t  

h2(t) = a2 sin (w 1 + wl)t, 

h(t) =(a: + a $  +2ala2 cos w't) 'I2 sin ( w l  t + $1 (t)), 



where 

a2 sin w't 
tan @l (t) = a1 f a2 cos o ' t  

The similarity between equations (83) and (84) is immediately apparent. Positive and 
negative signs in equation (84) are required to  take into account the initial phase difference 
(0 or a) between h l ( t )  and h2(t), but this is not necessary in the random excitation case. 

For equations (83) and (84) the maximum time delay has to  be sufficiently long to  
identify the frequency a'. This was demonstrated in figures 6 and 7 for the autocorrelation 
function. Under ideal conditions the choice of maximum time delay 7, is solely a matter of 
convenience, but in practice it may be dictated by the dynamic range of the analysis equip- 
ment (ref. 26) or by computer storage problems. When severe truncation occurs, the errors 
involved in the estimation of the damping from the measured locus of W(w)/P(w) are similar 
to those in the cross-power spectral density (sec. 4.3.5) and single-sided Fourier transform 
(sec. 4.4.4) methods. Correction curves derived from equation (68), examples of which are 
contained in figure 8,  can be used to  improve the accuracy of the damping estimates from the 
single-sided Fourier transform. 

One important problem, which is difficult to solve by means of the deterministic 
approach to  the transient excitation method, is that of noise interference in the excitation 
and response signals. Examples of the distortion in the frequency response function, 
obtained by means of equation (80) when noise is present, are shown in reference 16. Since 
the noise is usually random in nature, Kandianis (ref. 16) has applied random analysis 
methods to the system which, with the exception of the noise, is deterministic in nature. 
Kandianis discusses two possible approaches. The first one computes the power spectral 
density of the response, including the effects of the noise signals. Instead of equation (80) 
for the Fourier components, the power spectral density for the displacement is given by an 
equation similar to that obtained by combining equations (22) and (23). Thus, the displace- 
ment power spectral density function for mode a of the panel is 

where Sp2(u) is the power spectral density for the transient excitation applied at x: Spl(w) 
is the power spectral density for the noise in the excitation (in the present context this is the 
turbulent boundary layer pressure field),and Sn(w) is the noise in the response signal. I t  is 
assumed that p ( 5  ", t), p2(5 ",t), and n(t) are statistically independent. 

One word of caution is appropriate at this stage. The analysis of Kandianis assumes that 
the excitation signal is stationary and, at a later stage in the single-sided Fourier transforma- 
tion analysis, that the excitation is white noise. This assumption is valid only with certain 
restrictions. Skingle (ref. 24) shows that, under certain assumptions, the autocorrelation 
function for the rapid frequency sweep signal can be written in the approximate form 

sin (w 7) 
Rp2(7)* ( 0  27) , 



where o 2  is the upper cutoff frequency and the lower frequency o l  is assumed to  be zero. 
Equation (86) can be interpreted as implying that there is constant power spectral density in 
the excitation. Referring to  the notation of equation (8 l ) ,  the assumptions associated with 
equation (86) are that 

a ~ ~ < < l  and a ~ ~ < < l ,  

2 2 which in turn imply that T >> T . Thus, the assumption that the transient signal represents 
, . white noise is valid only if the maximum time delay in the autocorrelation function is small 

with respect to  the duration of the frequency sweep. 

The second approach used by Kandianis (ref. 16) is the single-sided Fourier transform 
of the autocorrelation function. The response autocorrelation function obtained from the 
transient excitation in the presence of noise is similar to  that encountered in the analysis of 
the autocorrelation function associated with boundary-layer-induced vibration (sec. 4.2.5) 
and suffers from the same experimental problems. Thus, Kandianis proposed the single-sided 
Fourier transform method. The analysis of the method has been discussed in section 4.4 with 
reference to  the response to the turbulent boundary layer, and there is no need to  repeat the 
analysis in this section. The main difference between the two approaches is that in section 4.4 
the turbulent boundary layer represented the excitation of interest and all other signals were 
noise, whereas in the present case the rapid frequency sweep represents the signal of interest 
and the turbulent boundary layer is classified as noise. 

Combining the results of equations (74) and (75), the single-sided Fourier transform of 
the displacement autocorrelation function will be: 

$'a(x) $13 (XI Ha(a) +EX--- oap + -- tau& sin 0 
a P MP IDql "d ap + i u  1 

+ i o  L& $(I.') Cpl (lP7 Y: ud)  d ~ ' d ~ " +  - cos o,, - sin 

The function Fw(w) still contains cross terms (a # p) associated with the boundary layer 
spatially distributed excitation. However, the single-point transient excitation does not intro- 
duce additional cross terms, with the consequence that the relative importance of the cross 
terms in equation (87) is less than in equation (74), where only boundary layer excitation is 
present. 



Truncation effects associated with the single-sided Fourier transform, and discussed in 
section 4.4.4, will be applicable to  the transient excitation case also. 

5.4 SUMMARY 

The non-steady-state methods discussed in section 5.0 cover a wide range of excitation 
signals. However, the practical value of several of these signals is very limited because of inter- 
ference effects from noise in the excitation or response. All the methods are associated with 
deterministic excitation signals, and there are difficulties in coping with random noise inter- 
ference unless random data analysis methods are adopted. 

For the methods discussed, the rapid frequency sweep method provides the best fre- 
quency control without having to  assume quasi-steady-state conditions. In addition, the rapid 
sweep method can be incorporated with random analysis techniques, provided that the maxi- 
mum time delay in the correlation functions is small relative to the time period of the sweep. 
Two steady-state random methods-power spectral density and single-sided Fourier transform 
of the autocorrelation function-have been considered, and the practical problems are very 
similar t o  those discussed in section 4.0 for steady-state excitation. Within the same constraints 
on time delay, the excitation-response cross-power spectral density method provides a third 
approach for transient excitation, and the problems encountered in practice would again be 
similar to  those for the corresponding steady-state excitation method. 



6.0 COMPARATIVE EVALUATION OF METHODS OF DAMPING MEASUREMENT 

In sections 4.0 and 5.0, several methods of measuring the damping of a system have been 
analyzed on an individual basis. Each method is found to have a number of associated prob- 
lems that, in practice, limit the useful range of test conditions. As a consequence, no method 
is applicable to all test conditions. Thus, for a particular experiment, the applicability of each 
method has to be evaluated and the most suitable method(s) selected. An evaluation of this 
sort will be carried out in this section, with specific reference to the test conditions associated 
with the vibration of panels exposed to a moving airstream. 

First it is appropriate to  restate the experimental conditions under which the selected 
method of damping measurement will be applied. Damping measurements are to be made on 
rectangular panels that will be mounted in the wall of a wind tunnel. One face of the panel 
will be exposed to turbulent boundary layer pressure fluctuations in the wind tunnel, and the 
other face will be enclosed in a chamber whose volume can be adjusted within a certain range. 
The tunnel will be operated under stable flow conditions. Panel dimensions, at least in the 
initial phases of the experimental program, will not exceed 30.48 cm (1 2 in.) in length or  
breadth. 

In this section, the damping measurement methods will be compared and evaluated on 
the basis of the theoretical analyses in sections 4.0 and 5.0, with constraints imposed by the 
above experimental conditions. Experimental support for the selected methods will be pre- 
sented in section 7.0, although the test setup in that section will not attempt to  reproduce 
the conditions described above. 

Several requirements that the selected methods must satisfy can be identified immedi- 
ately. These requirements are: 

a) The method must be able to exclude, or correct for, background noise in the 
excitation and response signals. 

b) The method must be able to exclude, or  correct for, off-resonant vibration in 
neighboring modes. 

c) The method must not require simultaneous measurement of the boundary layer 
excitation and the associated panel vibration, although independent measurements 
may be necessary. 

d) The required instrumentation must be compatible with the space restrictions 
imposed by the test chamber. 

Referring to  the analyses in sections 4.0 and 5.0, requirement a) disqualifies the non- 
steady-state methods, with the exception of the rapid frequency sweep method, which uses 
the power spectral density function or the single-sided Fourier transformation of the auto- 
correlation function. The response autocorrelation function for boundary layer excitation is 
eliminated by requirements a)  and b), and the excitation-response cross-power spectral density 
method, using turbulent boundary layer excitation, is eliminated by requirement c ) .  A 



combination of requirements a) and d) causes the rejection of the cross-power spectral den- 
sity method when a second excitation is introduced. 

The methods still retained are the power spectral density and single-sided Fourier trans- 
form methods associated with either boundary layer or  transient excitation. Retention of the 
power spectral density method may appear surprising at first, since many of the other methods 
have been introduced in the past as improvements over the power spectral density approach. 
Thus, some explanation of the decision is necessary. 

The two main criticisms of the power spectral density method concern the difficulties 
of separating resonant vibration from off-resonant vibration and background noise. Diffi- 
culties that may have been encountered in the past because of too wide a filter bandwidth 
can be adequately overcome with the narrow bandwidths now available through digital analy- 
sis and the use of correction terms. The use of these same narrow filter bandwidths enables 
the separation of close natural frequencies, but there still exists the problem of off-resonant 
vibration and background noise at a natural frequency. Methods can be devised to correct 
for the errors imposed by these interference signals, and one such method has been discussed 
in section 4.0. Although rather crude in form, the correction procedure appears fairly satis- 
factory, particularly if used in conjunction with the optimum positioning of the measuring 
transducer. The more sophisticated methods, which have been proposed as improvements 
over the power spectral density approach, are correspondingly more sensitive to experimen- 
tal scatter. 

The comparison has now reduced to  one of steady-state random excitation versus rapid 
frequency sweep. Historically, transient excitation methods were introduced for use in experi- 
mental conditions that are stable for only short periods of time. Since the present test con- 
ditions are stable over 'relat ive~~ long periods, the basic property of the transient excitation 
cannot be classified as an advantage. Further, the method involves the introduction of a sec- 
ond excitation, with accompanying instrumentation problems, and a severe signal-to-noise 
ratio problem because the boundary layer induced vibration is now regarded as noise. The 
transient excitation has to be transmitted to the test panel and, unless a suitable choice of 
panel material has been made, some mass loading of the panel may be necessary. 

However, the transient method possesses advantages associated with single-point exci- 
tation. Mode isolation can be controlled to a certain extent by choice of excitation location, 
although the benefits of the technique are limited by the presence of the boundary layer 
induced vibration. Also, single-point excitation does not introduce, cross-term contributions 
in the response spectra, so the adverse effects of the cross terms (a # p) ,  induced by the 
spatially distributed boundary layer excitation, are reduced. In addition, the rapid frequency 
sweep method uses deterministic excitation, thereby tending to  reduce the experimental 
scatter in the measurements. The sinusoidal nature of the excitation allows concentration of 
the excitation energy at selected frequencies and improves the signal-to-noise ratio. 

Basically, the steady-state and rapid frequency sweep methods appear to  offer similar 
degrees of accuracy in the damping measurements. Thus, the instrumentation requirements 
will play a major role in determining the most suitable method. Using this as the criter- 
ion, the power spectral density and single- sided Fourier transform methods associated with 
turbulent boundary layer excitation were selected for subsequent experimental demonstra- 



tion. The instrumentation requirements are no different from those normally associated with 
the measurement of structural response to  turbulent boundary layer excitation, and the panel 
displacement power spectrum due to  boundary layer excitation is an immediate byproduct 
of the damping measurements. The theoretical analysis does not indicate the superiority of 
either the power spectral density method or the autocorrelation single-sided Fourier trans- 
form method, with the consequence that both methods are selected for experimental testing. 



7.0 DATA REDUCTION REQUIREMENTS 

7.1 INTRODUCTION 

Many of the methods of damping measurement discussed in sections 4.0 and 5.0, 
including both of the methods selected in section 6.0, require random process techniques 
for data analysis. It is possible that analog or digital techniques could be used, but, for damp- 
ing measurements, digital methods are recommended because of the greater flexibility in 
choice of filter bandwidth and other characteristics and because the digital methods are 
usually more economical. For some of the Fourier transformation calculations, digital tech- 
niques of data reduction are almost essential. 

The use of digital data reduction methods introduces a number of requirements on data 
sample length, digitization rate, filter bandwidth, etc., and some comments on the require- 
ments are necessary to  show their influence on the measured damping. For this reason, the 
present section will provide a general discussion on the requirements. Comprehensive dis- 
cussions of digital data reduction techniques, as applied to  random time series, can be found 
in references 20, 29, 30, and 3 1. 

The data reduction scheme followed in the demonstration experiment, which can be 
considered as a typical procedure, is shown in the flow chart in figure 10. The data reduction 
is carried out in four stages that are strongly interdependent, the output of one stage being 
the input of the next. Thus, even the last step in the data reduction cycle can impose restric- 
tions on the data acquisition. As an example, the required statistical reliability of the estimated 
response power spectral density will determine the initial length of the data recording. Although 
some of the data reduction requirements may be peculiar to the current data analysis tech- 
nique, most requirements will be common to all similar damping measurement experiments. 

7.2 DISCRETE FOURIER TRANSFORMS 

A function p(t), continuous in time t, can be represented by a series of discrete samples 
p(n,t) in time. Generally, the discrete points pn are sampled at equal time intervals AT, and 
the sampling rate s is defined as s = ]/AT. If N discrete points p, = p(n,Ar) are given for 
n = 1,2,..;N, then the time series is known in a finite time interval AT where AT = N . AT, and 
AT can be referred to as a "subinterval." An infinite discrete time series can be obtained by 
letting N--m. The complex Fourier amplitude of a continuous function p(t) is given by 
equation (1 0) as 



The equivalent of equation (88) in a finite discrete time series is 
N T-l 

where N is an even integer and the fundamental frequency interval 

For k = 0,  Po gives the mean of pn. It can be shown that -N/2 < k < N/2, i.e., the 
number of distinct Fourier amplitudes Pk is equal t o  the number N of discrete samples in 
time pn. Thus, AT determines the frequency resolution and s = 1/Ar determines the maximum 
frequency fmax = N - AfF/2. The Fourier amplitude Pk will have a frequency window of 
the form (sin AfF)/hfF. 

If the direct method of calculating power spectral density is used, as indicated by 
equation (12), then the power spectral density of pn is given by 

where the asterisk denotes the complex conjugate. The Fourier amplitude and the complex 
conjugate will each have a frequency window of the form (sin AfF)/AfF. Thus, the spectral 

2 window of the estimate of the power spectral density Sk will be of the form [(sinAfF)/A fF] , 
and has an associated triangular, or Bartlett, lag window. 

When the power spectral density Sk(k,AfF) is obtained by means of the direct method 
of equation (91), the autocorrelation function Rn = Rn(n,Ar) is computed by transforming 
Sk(k,AfF). The autocorrelation function will be given in the time interval -N/2 - AT < 
t < N . A ~ / 2 , a t  discrete time lags A7; and the transformation process will incorporate the 
above triangular lag window. 

The single-sided Fourier transform of the discrete autocorrelation coefficients can be 
represented by equation (89). Therefore, the calculated single-sided Fourier transform will 
have a spectral window of the form (sin AfF)/AfF and the description that follows equation 
(89) will also be applicable. Computer programs that use the fast Fourier transform algoAthm 
to calculate power spectral density, autocorrelation, and single-sided Fourier transform func- 
tions will introduce the above characteristics into the computed functions. 

7.3 DATA REDUCTION REQUIREMENTS 

There are several data reduction requirements. Some are peculiar to digital analysis, 
while others are common to  all random data analysis techniques-digital or analog. These 
requirements are discussed below. 



7.3.1 Filter Bandwidth 

Errors introduced by finite bandwidths of the analyzing filters are discussed in section 4.0, 
where it is shown that, for rectangular filters, a bandwidth that is half of the measured 
resonance bandwidth, will introduce an error of about 14% in the estimated damping factor. 
Theoretically, corrections can be applied t o  measured damping factors obtained by means of 
any filter bandwidth, but in practice the correction procedure has acceptable accuracy only 
if the errors are relatively small. Thus, for power spectral density measurements, a filter band- 
width requirement can be specified as AfF < AfM/2. Obviously, some prior knowledge of 
the damping in the system is required, or an iteration method has to  be applied in the 
selection of AfF. 

For a given set of digitized data, the effective filter bandwidth will be a function of the 
time length of the data sample and the digital analysis process used in the computation. The 
frequency-dependent function will be obtained from a time series that can be either the 
original data or a correlation function. Fourier transformation from time to frequency domains 
will be performed with some time or  lag window because of the finite limits on the time series. 
This lag window will, in turn, determine the characteristics of the spectral window or filter 
in the frequency domain, as indicated in reference 20. For example, a rectangular lag window 
of width AT has a spectral window of equivalent width equal t o  1/AT. Lag windows, such as 
triangular, Hanning, Hamming, and Parzen windows, have the effect of improving the statistical 
reliability of the data but increase the effective bandwidth of the filters for a given value of 
AT. The advantage of these nonrectangular lag windows lies in the reduced amplitude of the 
filter side lobes. 

7.3.2 Total Sample Length 

The length of the data samples used in the random analyses will influence the statistical 
reliability of the reduced data; the shorter the sample length the lower will be the reliability. 
However, long samples require long processing time, and a compromise has to be reached 
between long sample length and practical limitations on cost and computer core storage 
requirements. 

The reliability of the power spectral density estimate is characterized by the normalized 
standard error e where 

If the total sample length T consists of V subintervals, each of length AT, then T = V AT 
and, using equation (90), 

Thus, in practice, statistical scatter can be reduced by increasing the number of subintervals, 
or subspectra, used to obtain an ensemble average. The effect is illustrated in figure 1 1, where 
the four power spectra are calculated using four different values of V, i.e., V = 9 , 2 5 ,  50 and 
100 (E= 0.33,0.2, 0.14, and 0.1). For V =  9 (fig. 1 la), resonance peaks in the vicinity of 



1000 Hz are completely obscured by the statistical scatter. As V increases, the statistical 
scatter is reduced and the peaks are better defined. The statistical scatter in the power 
spectral density will introduce equivalent scatter in the autocorrelation and the single-sided 
Fourier transform functions. Thus, when filter bandwidth requirements are specified, based 
on considerations stated in earlier sections, the total sample length requirements can be 
estimated so that a desired degree of statistical reliability can be achieved. 

When the vibration spectrum is obtained by an ensemble average of a series of sub- 
spectra, the vibration autocorrelation function is calculated from the average spectrum by 
means of the inverse Fourier transformation. This method reduces the statistical scatter 
in the autocorrelation function, with a minimum of computer operating time. 

7.3.3 Digitization Rate 

Analog-to-digital conversion of a signal requires the selection of a digitization or 
sampling rate s that is determined by the upper frequency of interest in the spectral analysis. 
Too low a sampling rate will introduce aliasing errors in the spectrum, but too high a sampling 
rate will lead to problems in data handling and economics. Thus, a compromise is again 
required. For Fourier analysis of a time series using the fast Fourier transform algorithm, the 
relation between the upper frequency of interest fmax and the lowest acceptable sampling 
rate is given as s = 2fmax, but, in practice, a higher sampling rate is necessary. Aliasing errors 
will depend on the spectral content of the signal t o  be analyzed, but, in general, for stationary 
time series analysis, a sampling rate of s = 2.5fma, is adequate. 

7.3.4 Number of IBta Points 

The filter bandwidth and sampling rate together determine the number of data points to  
be used in the calculations. Thus, the number of data points N is given as N = AT/AT = s/A fF 
when AfF = 1 /AT. The fast Fourier transform algorithm requires thaf the number, L, of 
data points used in the transform be an integer power of 2, i.e., L = 23 where j is a positive 
integer. If N < L, then (N - L) zeros are added to the data points and the calculation carried 
through with L points. The addition of zeros to  the time series will not change the filter band- 
width since this is still a function of the original sample length AT. However, the presence of 
the zeros will change the frequency interval Af' at which the Fourier transform is calculated 
since A f l =   AT' where AT' is the sample length after the addition of the zeros. Obviously, 
selection of the number of zeros is again a compromise, with computer storage and cost pro- 
viding a constraint. 

The addition of zeros to reduce the frequency interval has been used in the single-sided 
Fourier transform method (ref. 26) for the analysis of ship vibration. 



8.0 DEMONSTRATION EXPERIMENTS 

8.1 TEST OBJECTIVES 

Two methods-the response power spectral density method and the response autocorre- 
lation single-sided Fourier transform method-have been selected in section 6.0 as being the 
most suitable for the measurement of damping in panels exposed to  a moving airflow. These 
two methods have been used to calculate damping factors of a rectangular panel from data 
obtained in laboratory demonstration experiments. The primary objective of the experiments 
is the demonstration of the validity of the two selected methods under laboratory conditions, 
with a secondary objective being the illustration of the various errors and limitations discussed 
in the analytical investigation. Both objectives are essentially met by the demonstration experi- 
ments described in the following sections. 

8.2 DESCRIPTION OF DEMONSTRATION EXPERIMENTS 

8.2.1 Introduction and Planning 

Typical work elements of the demonstration experiments are shown in the flow diagram 
in figure 12. The experiments can be divided into three parts: 

a) Fundamental vibration characteristics of the test panel. (Analytical and experimen- 
tal determination of natural frequencies and mode shapes.) 

b) Measurement of panel damping using discrete frequency excitation. (These values 
of the damping are used as standards in the evaluation of the random excitation 
methods.) 

c) Measurement of panel damping using random excitation. 

The test specimen chosen for the experiments was a 30.48- by 17.78- by 0.127-cm (1 2- 
by 7- by 0.05-in.) rectangular aluminum panel with clamped boundaries. The 20 lowest 
natural frequencies of the panel were calculated using Warburton's method (ref. 32), and 
these are listed in table I. It can be seen that the test panel possesses some modes whose 
natural frequencies are fairly well isolated, e.g., modes ( l , l ) ,  (2,1), and (3,1), and other 
modes with close natural frequencies, e.g., modes (4,2), (5,1), and (1,3) and modes (5,2), 
(3,3), and (6,l).  Thus, the two methods of damping measurement can be evaluated for 
single modes and for closely spaced groups of modes. 

As is anticipated from section 3.1, the damping of the test specimen is very low. Since 
this low damping is not necessarily typical of all environments likely t o  be encountered in the 
wind tunnel, it was considered that the damping measurement methods should be evaluated 
also under conditions of relatively high damping. To this end, the demonstration was carried 
out first on the bare.panel and then repeated with a single layer of damping tape (table 11) 
applied to  one surface of the panel. The damping tape increased the panel damping by an 



order of magnitude and permitted evaluation of the measurement techniques over a wide 
range of values for the damping factor. In the present discussion, therefore, the high and 
low damping cases will refer to  the test panel with and without damping tape, respectively. 
The application of the damping has only a small effect on the panel natural frequencies. 
Based on the change in total surface density, the calculated natural frequencies will change 
by a factor of 0.943. 

To make a consistent evaluation of the selected methods, it is essential that there be 
no change in damping of the test panel when the excitation changes from discrete frequency 
to random. This can be achieved with certainty only if the same means of excitation is used 
for both test conditions, and it is for this reason that turbulent airflow was not used as the 
source of the random excitation. There was no guarantee that the acoustic radiation damping 
would not change in the presence of the airflow. 

Two possible excitation methods, single point or distributed loading, were available for 
the experiment. Single-point excitation has the advantage that selected modes can be excited 
or suppressed. However, since the panel material was aluminum, noncontacting magnetic 
excitation could not be used and single-point excitation would have involved mass loading 
of the panel. Acoustic excitation does not have the modal selectivity of single-point loading 
but is more typical of the loading distribution imposed by a moving airstream. Furthermore, 
the two selected measurement methods do not specifically require point excitation. Thus 
acoustic plane wave excitation was chosen for the demonstration experiments. 

Knowledge of the panel mode shapes is highly desirable, even essential, if reasonable 
accuracy is to be achieved in the damping estimates. Identification of the nodal and antinodal 
lines allows selection of the measuring transducer locations so that vibration in a particular 
mode can be given preference. Qualitative information, such as that obtained from Chladni 
or nodal patterns, is sufficient for the selection of the measurement positions. 

8.2.2 Experimental Setup and Instrumentation 

A block diagram of the experimental setup and instrumentation is shown in figure 13. 
The aluminum test panel was mounted on a heavy pedestal such that it could be excited by 
acoustic waves with angles of incidence varying from grazing to normal by changing the 
orientation of the acoustic horn and panel. The test panel could be mounted in the vertical 
or horizontal plane, the horizontal plane being used only when obtaining the Chladni figures. 
The excitation was either single-frequency (pure-tone) or band-limited white-noise acoustic 
waves, and the intensity of the excitation was controlled by means of the voltage across the 
acoustic horn. 

The panel response was measured in terms of displacement, using a noncontacting Photocon 
proximity transducer, Model PT5, which was mounted on a traverse bar. It was possible to 
locate the probe at any position over the plate, with the gap between the probe and the test 
panel adjusted to  any desired value. The gap between the probe and the test panel at rest was 
chosen as 0.076 cm (0.03 in.) to  provide the required sensitivity for the displacement meas- 
urements. The Photocon proximity probe was calibrated, and the ac voltage output of the 
probe provided a measure of the displacement of the panel. 



The excitation signal could be measured either in terms of the voltage input t o  the driver 
unit of the acoustic horn or in terms of the acoustic output of the horn. T o  measure the sound 
field, a 114-inch-diameter Bruel and Kjaer microphone was located near the horn exit. When a 
band-limited white-noise signal was applied to the driver unit, the acoustic pressure field in 
the neighborhood of the test panel had a power spectral density that was flat to within +5 dB 
in the frequency range of 200 to  2000 Hz and +2 dB in any octave band in this frequency 
range. The horn response did not contain sharp spikes but varied slowly with frequency. In 
the vicinity of any panel natural frequency, the horn response could be considered to  be flat. 

During the discrete frequency tests, the phase angle between the voltage input to  the 
horn and the voltage output of the proximity or displacement probe was measured in addition 
to the amplitudes of the two signals. The data were analyzed on line. For the random excita- 
tion methods, the voltage input to  the driver, the acoustic output of the horn, and the panel 
response were recorded on magnetic tape to  provide an analog source tape. The analog signals 
were subsequently passed through an analog-to-digital converter to  produce a digital data tape. 
A CDC 6600 digital computer was used to  process the digitized data. 

The experiments were conducted in an acoustical test room where the acoustic environ- 
ment could be controlled. 

8.3 EXPERIMENTAL PROCEDURE 

8.3.1 Preliminary Experiments 

The preliminary experiments included experimental determination of the natural fre- 
quencies, qualitative estimates of mode shapes by means of Chladni figures, determination 
of suitable angles of incidence of the acoustic waves for exciting desired modes, and coarse 
estimates of the half-power bandwidths of a few modes. Using acoustic waves of grazing inci- 
dence, it was possible to  excite all mode orders in the direction of propagation of the acoustic 
waves. Therefore, waves of grazing incidence propagating along the length of the panel were 
used in most of the investigation. Only when obtaining the Chladni figures for modes with 
even order along the width of the panel was the excitation changed such that waves of grazing 
incidence would propagate along the width. 

To obtain the nodal line patterns (Chladni figures) for the test structure, the panel was 
mounted horizontally and white, dry sand or fine aluminum filings were spread thinly on the 
panel surface. The panel was excited at each natural frequency in turn, and the nodal pattern 
was photographed when the excitation was turned off. 

Figure 14 shows Chladni figures for the bare panel. Chladni figures for the panel with 
damping tape are almost the same as the corresponding figures for the panel without tape. 
Thus, the patterns shown in figure 14 can be considered as representative of the low and high 
damping conditions. The irregular nodal patterns that occur at some natural frequencies are 
most likely due to inhomogeneities in the thickness and flatness of the panel and to  initial 
stresses. However, for the present demonstration, these details are irrelevant. 



One peculiarity observed during the preliminary experimental stage is worthy of com- 
ment. In the process of obtaining a quick estimate of the half-power bandwidth of the (2 , l )  
mode for the low damping case, the response amplitude varied significantly even when the 
amplitude and frequency of the excitation were held constant. A systematic investigation of 
the phenomenon ruled out the possibility of drift in the measuring instruments, and it was 
deduced that the variation in the amplitude was inherent to the panel response and was due 
to drift in natural frequency. The frequency drift (measured via variation of response ampli- 
tude as indicated above) showed a strong dependence on the peak response amplitude. When 
the panel displacement was slowly increased, the first noticeable occurrence of the drift was 
observed at a peak amplitude of about 0.0102 mm (0.0004 in.). The drift increased signifi- 
cantly when the peak displacement exceeded 0.025 mm (0.001 in), but no drift was observed 
below 0.0076 mm (0.0003 in.) peak displacement. Therefore, the excitation was adjusted to 
give a peak displacement of less than 0.0076 mm (0.0003 in.). A similar, but less pronounced, 
frequency drift was observed for mode (1,l) .  No frequency drift was observed for the high 
damping case. 

8.3.2 Discrete Frequency Excitation 

For this phase of the experiment, similar procedures were used for the high and low 
damping cases. The panel was excited by a pure tone at the natural frequency of a mode 
under investigation. The measuring displacement probe was located at an antinode of the 
mode, the location being selected by means of the previously obtained Chladni figures. The 
excitation was then adjusted such that the peak deflection at resonance was less than 0.0076 mm 
(0.0003 in.). For the higher order modes and for the high damping case, the maximum allow- 
able input voltage to the driver was often the limiting factor; under these conditions, the peak 
deflection was substantially less than 0.0076 mm (0.0003 in.). The response amplitude and 
the phase with respect to  the excitation were measured at a series of frequencies in the vicinity 
of the resonance. For a few selected modes, the excitation frequency was varied in both 
ascending and descending directions to  ensure repeatability. 

In the case of a mode with a natural frequency close to  other natural frequencies, the 
contributions from other modes were minimized by locating the measuring probe on or near 
nodes of the undesired modes. In such a case, the probe may be located off the antinode of 
the mode under investigation. For example, when investigating mode (6,1), the measuring 
probe was located at x l  = 8.89 cm (3.5 in.), x3 = 11.43 cm (4.5 in.) so that the contribution 
of the (3,3) mode was eliminated, the probe being located on a node line of the (3,3) mode 
(see fig. 14), and the contribution of the (5,2) mode was minimized. Similarly, when investi- 
gating the (5,2) mode, the contribution of the (3,3) mode was eliminated by locating the 
probe at x 1 = 12.07 cm.(4.75 in.), x3 = 13.34 cm (5.25 in.). Measurement locations used 
during the discrete frequency test are given in table 111. 

The effects of background noise and off-resonant contributions have been discussed in 
section 4.0. To obtain estimates of the magnitude of these contributions in the displacement 
spectra, the response spectra were investigated on either side of each natural frequency, and 
the spectral minima adjacent to  each natural frequency were identified. The spectral densities 
and frequencies associated with these minima were recorded. 



8.3.3 Random Excitation 

A procedure similar t o  that described above for discrete frequency excitation was used 
for the random excitation, except for the following two differences: (1) band-limited white 
noise was substituted for the pure tone and (2) the excitation, the response, and the input 
voltage to  the driver of the acoustic horn were recorded on a magnetic tape t o  produce an 
analog source tape. Measurement locations and excitation bandwidths are given in table IV. 

Reduction of the random data for the demonstration experiment was carried out in 
four steps: data acquisition and recording to  produce the analog tape, analog-to-digital con- 
version, use of a computer program to  calculate the displacement power spectral density and 
autocorrelation functions, and, finally, calculation of the single-sided Fourier transform of 
the autocorrelation function. The procedure is the same as that outlined in figure 10. 

The voltage signals representing the panel displacement, acoustic excitation, and current 
supplied to the driver unit of the acoustic horn were recorded on magnetic tape at a tape 
speed of 152 cm/sec (60 in./sec), to  produce the analog source tape. The analog tape was 
then replayed into digitizing equipment to  produce a digital tape. Since the maximum fre- 
quency of interest was specified as 2000 Hz, a digitization rate of 8000 samples per second 
was used. This satisfied the condition s > 4fmax, required by the single-sided Fourier trans- 
form computations (see below), for all run conditions. Digitizing rates less than 8000 samples 
per second could be used if fmax < 2000 Hz, and these lower sampling rates were obtained 
from the original digitized data by means of a decimation process. However, the condition 
s < 4fmax was always satisfied. A total of 60 sec of data was recorded for each test run and, 
from this, a total of 54 sec was digitized. 

For the high damping case, all data runs were averaged over 50 subspectra. Thus, the 
normalized standard error e of the power spectral density estimates was about 0.15 for the 
high damping case. When the low damping data reduction was carried out, the maximum 
available sample time length of 54 sec became a critical factor, and in only three runs (7A, 
7B, and 8B) could the spectra be computed by averaging 50 subspectra. A smaller number of 
subspectra was used in all other low damping runs. 

Filter bandwidth requirements are extremely critical at low frequencies in the low 
damping case. For example, in modes (2 , l )  and (3,1), filter bandwidths of 0.35 and 0.9 Hz 
are desirable. However, the limited data sample length of 54 sec was not sufficient to provide 
acceptable statistical scatter (c < 0.15) for such narrow filter bandwidths, so a larger band- 
width of about 1.0 Hz was used. Filter bandwidth did not pose a problem for the high damp- 
ing results, the condition AfF g AfM/2 being satisfied in all cases. 

The computer program used to  calculate the single-sided Fourier transform imposed 
additional constraints on the data. The program was checked with respect to  known analyti- 
cal functions and it was found that, for a transformation error of less than 1%, A ~ E  should be 
less than AfM/4 and digitizing rate s should be greater than 4fma,. For an error of less than 
15%, AfF < AfM/2 and s > 4fmax. In the computation of the single-sided Fourier trans- 
form, zero terms were added to the autocorrelation function so that an adequate number of 
data points was available for the plotting of the response function. Addition of zero terms 
increased the maximum time delay by a factor of four for the low damping case, and by a 
factor of at least seven for the high damping case. 



8.4 DISCUSSION OF RESULTS: DISCRETE FREQUENCY EXCITATION 

Three possible ways of calculating damping factors using the discrete frequency excita- 
tion are presented in figures 15a, b, and c. For a single mode, such as the (2 , l )  mode, which 
has a natural frequency well separated from the adjacent natural frequencies, all three meth- 
ods would yield damping estimates of similar accuracy. Because of the low damping in the 
case of the bare test panel, most of the modes can be considered to satisfy, approximately, 
the conditions for a single mode. Thus, for the low damping case, the response amplitude 
method and the Kennedy-Pancu vector diagram (amplitude phase plot) give damping factors 
that are within an acceptable experimental scatter, e.g., the damping factors calculated using 
the two methods are within k2.576 of each other for all modes except three. Two of the three 
exceptions have experimental scatter of f 5%, whereas, for the remaining mode (5,2), the 
Kennedy-Pancu method gives a damping factor that is 67% of the one calculated from the 
response amplitude method. The higher estimate from the response amplitude method is 
attributed to the off-resonant contribution from the (6 , l )  mode. 

When damping tape is applied t o  the test panel, only a few lower order modes, e.g. (2,1), 
(3,1), and (4. l) ,  satisfy the conditions for a single mode. Due to contributions from the off- 
resonant modes, damping factors calculated from the response amplitude method are gener- 
ally higher (by an average of 15%) than those calculated by the Kennedy-Pancu method. No 
background noise corrections are applied to the discrete frequency response amplitude data 
because of problems in determining the correct phase-angle relationships. 

The effect of background noise and contributions from the off-resonant modes can be 
readily seen from the Kennedy-Pancu diagram. For a single-degree-of-freedom system, when 
the off-resonant contribution is zero, the center of the resonance circle will be located at half 
the peak amplitude, i.e., at 0.5 when the normalized amplitude is used. Thus, a deviation from 
0.5 is a measure of the off-resonant contributions. As an example, figures 16 and 17 show the 
Kennedy-Pancu diagrams from the low and high damping cases, respectively, of mode (2,3). 
The centers of the resonance circles for the low and high damping cases are located at 0.44 
and 0.26, respectively. 

As a contrast, consider mode (2, l ) ,  which is well separated from other modes. The 
Kennedy-Pancu diagram for the (2 , l )  mode, even for the high damping case (fig. 18), shows 
that the center of the resonance circle is at 0.46. 

When the natural frequencies of the two modes are so close that the two resonance 
circles cannot be clearly defined in the frequency range of the half-power bandwidth of the 
response peak, the damping factors can be calculated from the phase-angle plot (fig. 15b). 
The damping factors for the (5,1), (4,2), and ( l ,3 )  modes for the high damping case were 
obtained using this technique. All other damping factors shown in table I11 were obtained 
using Kennedy-Pancu diagrams. The damping factors shown in table I11 are used as the datum 
damping factors for the test panel with and without damping tape. 



8.5 DISCUSSION OF RESULTS: RANDOM EXCITATION 

The stochastic equivalents of the three schemes of calculating damping factors are shown 
in figures 1 5d, e, and f. Once again, in principle, all three methods can yield estimates of sim- 
ilar accuracy for a single mode that is free from background noise and contributions from off- 
resonant modes. The practical application of these methods to  a multimodal system is 
described here. The primary objective is to  assess the response power spectral density and 
single-sided Fourier transform of the response autocorrelation methods. Therefore, no 
attempt is made to calculate the damping factors of each and every mode. Since the panel 
was excited by acoustic waves propagating along the length of the panel, most of the modes 
with mode order higher than one in the width will not be excited very efficiently. Those 
modes are usually excluded from the discussion, but this exclusion does not cause any loss 
of generality in the conclusions. 

8.5.1 Response Power Spectral Density Method 

The high damping case, which will be affected by the background noise and contribu- 
tions from off-resonant modes more than the low damping case, is considered first. The 
response spectra calculated from runs 2B, 4B, and 9B (see table IV) are shown in figures 19, 
20, and 2 1, respectively. Spectra drawn in figures 19 and 20 indicate that the peak response 
in the (2 , l )  and (4 , l )  modes is higher than the nearest valley in the spectrum by a factor of 
more than 10. Thus, these two modes are considered t o  represent a single-mode case. For 
both the modes, AfM/AfF > 5; therefore, errors due to  filter bandwidth are less than 2%. 
The calculated damping factors for the (2 , l )  and (4 , l )  modes are 1.08 and 1.12 times the 
datum damping factors (see table V). 

Now consider mode (3,l)  shown in figure 20. Due to  the measurement location for run 
4B (see table IV and Chladni figures in fig. 14a) the (3 , l )  mode is suppressed and the response 
peak shows some contribution from the background noise. The damping factor for mode 
(3,1), before applying background noise correction, is 1.28 times the datum damping factor. 
When the background noise correction is applied (fig. 4), the corrected damping factor in 
table V for the (3 , l )  mode is 1.1 1 times the datum value. 

A relatively large excitation bandwidth, 200-2000 Hz, was used for run 9B. Thus, the 
response spectrum shown in figure 2 1 will be similar to  that obtained by exciting a panel by 
broadband turbulent boundary layer pressure fluctuations. The measurement location was 
such that the probe would measure all modes with mode order less than six in the length 
direction and less than four in width direction. As expected, the spectrum shows a series of 
peaks with different relative levels, and the (3,2) mode can be taken as an example of very 
high contributions from background noise. For this mode, the damping factors calculated 
with and without background noise correction are, respectively, 1.06 and 1.33 times the datum 
damping factor. 

Measured damping factors, estimated by means of the power spectral density method, 
are shown in table V for several modes in the high damping case. Where necessary, the meas- 
urements have been corrected for background noise using figure 4. The data are separated 
into two categories that are determined by the magnitude of the background .noise. For 



table Va, the displacement power spectral density ratio of resonant peak to  adjacent valley 
is greater than 10 dB, whereas, in table Vb, the ratio is less than 10 dB. In all cases, the filter 
bandwidth is less than a quarter of the measured resonance bandwidth so that the resolution 
error, predicted by figure 5, is less than 3%. For the high damping case, when the background 
noise is low, table Va shows that the error in the measured damping factor varies from -1 1% 
to +25% of the corresponding datum value, with a root mean square (rms) error of 12%. 
When the background noise is high (table Vb), the error increases and, for the data shown, 
lies in the range of +6% to  +89% with an rms error of 44%. 

The problems encountered in the measurement of low damping factors are rather dif- 
ferent from the high damping case. The off resonant/background noise contributions do not 
now pose problen~s. However, due t o  the narrowness of the resonance peaks, the filter band- 
width becomes a critical factor for the lower order modes. Also, as discussed in section 7.0, 
long sample lengths are required for good statistical reliability with narrow filter bandwidths. 
The response spectra calculated from low damping runs 4B, 9B, and 8B are shown in figures 
22, 23, and 24, respectively, the total sample length being the same for all three cases. Filter 
bandwidth AfF, is 0.5 Hz in figures 22 and 23 and 1.0 Hz in figure 24. The two cases with 
the smaller filter bandwidth show higher statistical scatter, which makes it difficult to calcu- 
late accurately the half-power bandwidths of the peaks. 

A comparison of the spectra in figures 23 and 24 indicates another important problem 
area. The excitation bandwidths for runs 8B and 9B are 800-1600 and 200-2000 Hz, respec- 
tively. Due to the wider excitation bandwidth for run 9B, the lower order modes, which can 
be excited relatively efficiently, dominate the spectrum in figure 23. In run 8B, the excita- 
tion has an 18-dB per octave rolloff below 800 Hz, thus, the lower order modes are de-empha- 
sized in figure 24, and the peak response amplitudes are of similar magnitude for many of the 
modes shown. When the panel is excited by the broadband noise due to  turbulent airflow, 
an effect similar to that in figure 24 can be obtained by filtering the response signal from the 
displacement probe before recording the data. 

Measured damping factors for the low damping case are shown in table Vc for the power 
spectral density method. In all cases except one, the power spectral density peak-to-valley 
ratio is greater than 10 dB, and the damping factor lies within a range of -18% to  +32% of the 
datum values. The rms error is 15%. Except where indicated, the damping factors in table Vc 
were obtained using filter bandwidths less than half of the measured peak bandwidth. 

8.5.2 Single-Sided Fourier Transform Method 

The single-sided Fourier transform Fw (a) of the displacement autocorrelation function 
was computed using the fast Fourier transform algorithm on a digital computer. Data reduc- 
tion requirements associated with the computer program have been discussed in section 8.3.3. 
These requirements were satisfied for all modes investigated at the higher damping condition 
but not for all modes with the lower damping. 

Consider first the high damping case because these results show the accuracy of the 
method when used under satisfactory conditions. As an example, the function Fw (a) for the 
(2, l)  and (2,3) modes is shown in figures 25 and 26, respectively. In both cases, the locus of 



Fw (a) is approximately circular with some distortion because of truncation errors introduced 
by the finite maximum time delay. The curves can be compared with the corresponding fig- 
ures for discrete frequency excitation shown in figures 18 and 17, respectively. Vector curves 
for modes (5, l) ,  (4,2), and ( 1,3), which have close natural frequencies, are shown in figure 
27. The figure clearly shows the effect of contributions from off-resonant vibration. 

In common with the function H (a), the natural frequency of a mode is located where 
the rate of change of arc length with frequency is a maximum for the function Fw (a). In 
many cases, such as figures 25 and 26, the natural frequency can be located by visual inspec- 
tion of the vector diagram. The resonance diameter is drawn and the damping factor calcu- 
lated as illustrated in figure 15f. When there are close natural frequencies, it may be difficult 
to  locate each resonance by visual inspection of the vector diagram, and a curve of arc length 
as a function of frequency is plotted as shown in the example of figure 28. If the resonance 
circle is not clearly defined over the half-power bandwidth, the damping can be calculated 
from the phase-angle plot in the neighborhood of the natural frequency. 

Measured damping factors for several modes, estimated using the single-sided Fourier 
transform of the displacement autocorrelation function, are shown in table VI. Data for the 
high damping case have been separated into low and high background noise categories, as in 
table V for the power spectral density method. For modes with small background noise and 
off-resonant contributions, the estimated damping factors in table VIa are within - 18% to  
+23% of the datum values, with an rms deviation of 13%. For high-noise conditions, defined 
as a power spectral density peak-to-valley ratio less than 10 dB, the estimated damping factors 
show deviations within the range -1 1% to 77% of the datum values with an rms error of 47%. 

One of the requirements of the computer program for calculating the single-sided 
Fourier transform is that the frequency resolution of the transform would be less than a 
quarter of the half-power bandwidth of the resonance peak (sec. 8.3.3). Within the limits of 
the data reduction system used in the demonstration experiments, the above requirement 
could not be satisfied for all lightly damped modes, such as modes (2 , l )  and (3 , l )  in table VIc. 
The damping factors in table VIc, which refer t o  the lightly damped conditions, have been 
corrected for truncation errors based on figure 9 but still show a wider experimental scatter 
than for the higher damping. For the data in table VIc, the estimated damping factors differ 
from the datum values by amounts ranging from -4% to  +70%, with an rms deviation of 43%. 

8.5.3 Comparison of Random Analysis Methods 

Damping factors for several normal modes of a rectangular panel have been estimated, 
from measurements made under random excitation conditions, using displacement power 
spectral density and single-sided Fourier transform methods. A comparison of the results 
identifies two important parameters, one of which is the presence of background noise and 
the other is the frequency resolution requirement of the single-sided Fourier transform method. 

Under the best test conditions, with low background noise such that the displacement 
power spectral density peak-to-valley ratio exceeded 10 dB, and with good frequency reso- 
lution defined as being a filter bandwidth less than a quarter of the resonant peak bandwidth, 
the measured damping factors were close to the datum values. The rms errors were about 13% 



for both of the methods tested. When the background noise or off-resonant vibration 
increased but the high-frequency resolution was maintained, the measured damping factors 
were less reliable, but both methods were of the same accuracy (an rms error of about 45%). 

Differences between the two methods were observed when the resolution criterion was 
not satisfied, even though an adequate signaIto-noise ratio was achieved. This is shown in the 
damping estimates for the low damping data. The power spectral density method shows an 
rms error of about 15%, which is close t o  the 13% error in the high damping data, but the single- 
sided Fourier transform method has an rms error of about 43%. It is apparent that the fre- 
quency resolution requirements imposed by the single-sided Fourier transform computation 
are more stringent than those for the power spectral density method. In certain test cases, 
with high damping and close natural frequencies, no damping estimate could be obtained 
from the power spectral density function, but an estimate could be obtained using the single- 
sided Fourier transform. However, this estimate could be highly inaccurate. 



9.0 CONCLUSIONS AND RECOMMENDATIONS 

Several methods of measuring the damping of panels have been evaluated with particular 
emphasis being placed on the practical problems associated with the use of the methods. In 
particular, the techniques were evaluated for application to  the measurement of the damping 
of panels exposed to  turbulent airflow. 

Based on analytical analyses, several methods were judged to  be unsuitable for the 
proposed application. Non-steady-state methods, which do not incorporate random data 
analysis techniques, were rejected because of noise problems, and the response autocorrela- 
tion method was rejected because of problems of noise and off-resonant vibration interference. 
The excitation-response cross-power spectral density function, using either boundary layer or 
a second excitation, was eliminated either because it required simultaneous measurement of 
the boundary layer pressure field and the vibration, or  because of potential low signal-to-noise 
ratios and problems of instrumentation location in the pressure equalization cavity. 

Two basic methods were retained: the response power spectral density and the single- 
sided Fourier transform of the response autocorrelation function. For these methods, two 
alternative excitations, the turbulent boundary layer or a rapid frequency sweep, were con- 
sidered. However, the latter excitation was rejected because of additional instrumentation 
requirements and because there was no need for transient techniques. 

The power spectral density and single-sided Fourier transform methods were demon- 
strated experimentally under conditions of spatially distributed, random excitation. Under 
many test conditions, the two methods estimated damping factors with similar experimental 
accuracy. However, the single-sided Fourier transform method imposes more stringent require- 
ments on frequency resolution than does the spectral density method. This becomes apparent 
when the damping is very low and computer restrictions do not permit the resolution require- 
ment to be satisfied. On the other hand, the single-sided Fourier transform method has advan- 
tages when the damping is high and natural frequencies are close together. Under such con- 
ditions, the power spectral density method has little value. 

From this evaluation, it is recommended that, in general, the response power spectral 
density method be used to measure the damping of panels exposed to turbulent airflow. Pro- 
vided appropriate correction terms are introduced, the reliability and accuracy of the method 
appears to  be as good as that associated with other methods, and the data acquisition and 
reduction requirements are no more than those normally demanded for structural response 
measurements. However, if the particular conditions of high damping and close natural fre- 
quencies are important, then the single-sided Fourier transform of the response autocorrela- 
tion function should be used for improved accuracy. 

Commercial Airplane Group 
The Boeing Company 

Seattle, Washington, August 197 1 



APPENDIX A 

Finite Bandwidth Effects in the Autocorrelation Method 

The autocorrelation function for a band-limited response signal can be studied by means 
of the function 

where 

@(w)=l  w ] G I w l < w 2  

= 0 elsewhere 

Using convolution relationships, equation ( A l )  can be written in the form 

where 

and 

From equations (A2) and(AS), 

2 d(t)  = 7(sinw2t - sinw t), 1 

and from equation (A4) and definition of H,(w), 



% 
The parameter wd is the frequency of free damped vibration, *I - ta2) . Substitut- 

ing equations (A6) and (A7) in (A3), 

where 

Two approaches are possible t o  solve equation (A8). In one approach, it can be shown 
that 

= a s c  coszr dz 
-c a2 + (b + .z)2 

and 

I2 = l;$sinbt [si;;~ ; t) + sin (7 C(T - t) - t )  ldt 

The integrals in equations (A?) and (A10) can be related to tabulated exponential 
integrals for numerical evaluation. However, a better insight may be possible using the 
approach of Kandianis (ref. 15). Equation (A8) contains integrals of the form 

and 



As an example, select 

--a 5 t sino2t 7 - w  5 t  sinw2t 
=ew""'[[ e " " coswd(t - T)-dt t - $ e " " coswd(t - 7)- t dt  ( A l l )  

0 1 
The infinite integral on the right side of equation (A1 1) can be evaluated using the results of 
Kandianis (ref. 15), 

and 

Terms of this type provide constant factors of the exponential e -wah'r' and so do not 
influence the damping estimate. 

To evaluate the finite integral on the right hand side of equation (A1 l ) ,  Kandianis (ref. 
15) makes use of the reduction formula 

xPeaX 
$xpeaxsin bxdx = - (a sin bx + b cos bx) - Sxp-' eax(asin bx - bcos bx)dx (A 1 2) 

a2 + b2 a2 + b2 

Taking the first term on the right side of equation (A1 2) as being an approximation for the 
integral on the left side, Kandianis shows that the autocorrelation function for a band-limited 
signal contains terms of the form (cos u2r ) / r  and (sin w2r)/r, with similar terms in o l .  These 
terms, since they are functions of 7, will distort the autocorrelation function and introduce errors 
in the damping estimates. Thus, the filter bandwidths have to be chosen to minimize these 
errors. 



APPENDIX B 

Truncation Effects in the Single-Sided Fourier Transform Method 

I11 practice, truncation errors arise in the computation of the single-sided Fourier trans- 
form function, and it is necessary to correct the measured damping factor. The magnitude of 
the correction can be estimated by means of the integral 

where 

D(7) = 1 0 g 7 em 

= o  7>rm 

Using the faltung relationship, equation ( B l )  can be written in the form 

where 

and 

for a single-degree-of-freedom system with frequency response function H,(a). Substituting 
(B4) and (B5) in (B3) gives 

where it is assumed that the excitation is white noise so that Sp(a) = Sp. Substituting 



in equation (B6), and using contour integration in the upper half plane, equation (B6) becomes 

where 

I f  ( I  /p)(ds/dw) is taken as a convenient measure of  the characteristics of the locus of 
F w ( o ; h ) ,  as suggested by Clarkson and Mercer (ref. 17), then 

Evaluating ( 1  /p)(ds/dw) at  the frequency of  maximum value of (Ha(w)12, i.e., a t  

and assuming that the damping is small so that ta2 << 1, equation (B8) reduces to 



2 2 or, after substituting for d  x/dw and dy ldo ,  
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TABLE 1.- CALCULATED^ NATURAL FREQUENCIES OF 
ALUMINUM  PANEL^ V1'ITH CLAMPED EDGES 

a~arbur ton method (ref. 32) 

b30.48 x 17.78 x 0.12 7cm (12 x 7 x 0.05 in.) 

 ode order (m,n) defined by number of half wavelengths along 
length and breadth of panel. 

d~ashes indicate natural frequencies higher than 2150 Hz. 

TABLE //.-DETAILS OF DAMPING TAPE 
r 

, Type 

Thickness of aluminum foil 

Thickness of adhesive 

Thickness of foil plus adhesive 

Weight 

Weight of bare panel 
Weight of panel and tape 

Scotch brand 428A 

14.0 x la3 cm (5.5 x in.) 

6.4 x crn (2.5 x in.) 
3 20.3 x 10- cm f 10% (8 x in. +lo%) 

4.40 ~ / m ~  (0.09 Iblsq f t)  

0.89 



TABLE Ill.-PANEL NATURAL FREQUENCIES AND 

TABLE 1V.-MEASUREMENT LOCA TIONS AND 
EXCITATION BANDWIDTHS FOR RANDOM EXCITATION 

a 
Excitation signal decreases at a rate of 18 dB per octave outside indicated frequency range. 

Mode 
order, 

m,n 

2.1 

3.1 

1,2 

2.2 

4.1 

3.2 

5.1 

4,2 

1.3 

2,3 

3.3 

6,l 

5.2 

EXCITATION 

Run 

28 

3A 

38 

4A 

48 

5B 

6B 

7A 

7B 

8A 

8B 

9B 

Low 

fm,n,Hz 

362 

545 

612 

717 

778 

888 

1095 

-- 

1124 

1221 

1405 

1404 

1405 

DISCRETE FREQUENCY 
damping 

tm,n 

0.001 02 

0.001 70 

0.00202 

0.00163 

0.001 90 

0.001 27 

0.001 27 

-- 

0.001 88 

0.0031 3 

0.001 94 

0.00 164 

0.0023 1 

High 

fm,n*Hz 

359 

538 

599 

700 

773 

867 

973 

1057 

1098 

1184 

1351 

1351 

1355 

DAMPING FACTORS MEASURED WITH 
damping 

tm,n 

0.01 53 

0.01 15 

0.0048 

0.0089 

0.01 75 

0.01 13 

0.0200 

0.0163 

0.0127 

' 0.0127 

0.0097 

0.0138 

0.0137 

Frequency range,a 
Hz 

200-400 

400-800 

400-800 

200-800 

650-850 

,600- 1 200 

1000- 1 200 

800- 1600 

800- 1600 

1250- 1 500 

800- 1600 

200-2000 

Location of 

1 

Location of 

Proximity Probe 

X3 

cm 

7.62 

15.24 

15.24 

7.62 

11.43 

15.24 

15.24 

15.24 

15.24 

7.62 

15.24 

8.89 

12.07 

cm 

7.62 

15.24 

7.62 

5.08 

19.05 

5.08 

15.24 

15.24 

7.62 

2.54 

2.54 

5.08 

proximity probe 

cm 

8.89 

8.89 

13.34 

13.34 

8.89 

13.34 

8.89 

8.89 

8.89 

8.89 

8.89 

1 1.43 

13.34 

in. 

3.0 

6.0 

6.0 

3.0 

4.5 

6.0 

6.0 

6.0 

6.0 

3.0 

6.0 

3.5 

4.75 

1 
~ n .  

3.0 

6.0 

3.0 

2.0 

7.5 

2.0 

6.0 

6.0 

3.0 

1 .O 

1 .O 

2.0 

cm 

8.89 

8.89 

13.34 

13.34 

13.34 

13.34 

8.89 

8.89 

8.89 

14.61 

14.61 

13.34 

in. 

3.5 

3.5 

5.25 

5.25 

3.5 

5.25 

3.5 

3.5 

3.5 

3.5 

3.5 

4.5 

5.25 

X3.  
in. 

3.5 

3.5 

5.25 

5.25 

5.25 

5.25 

3.5 

3.5 

3.5 

5.75 

5.75 

5.25 



TABLE V.-SUMMARY OF MEASURED DAMPING FACTORS 
USING POWER SPECTRAL DENSITY METHOD 

a Ratio of measured damping factor to datum damping factor. 

b~ i l te r  bandwith greater than one half of the resonance peak bandwidth. 

'spectral peak-tcwalley ratio < 10 dB. 

Bt Run Mode order, m,n 

(a) High damping (spectral peak-to-valley ratio > 10 dB) 

28 
9B 
3A 
4B 
9B 
38 
5B 
48 
78 
7A 
9B 

Frequency, fm,,, Hz Damping, L,n 

2,1 
2,1 
3,1 
3,1 
3,1 
3,1 
4,1 
4,l 
2,3 
3,3 
3,3 

(b) High damping (spectral peak-toualley ratio < 10 dB) 

356 
359 
535 
538 
536 
539 
772 
772 

1176 
1346 
1348 

0.0165 
0.0141 
0.01 29 
0.01 28 
0.01 26 
0.0144 
0.01 55 
0.0196 
0.0133 
0.0107 
0.0105 

3B 
58 
9B 
7A 
7B 

1.08 
0.92 
1.12 
1.1 1 
1.10 
1.25 
0.89 
1.12 
1.05 
1.11 
1.09 

4,1 
3,2 
3 2  
2.3 
3.3 

(c) Low damping 

780 
869 
865 

1185 
1340 

0.021 6 
0.0214 
0.01 20 
0.01 55 
0.0126 

8B 
4B 
8B 
8B 
4B 
88 
4B 
88 
7A 
7B 
7A 
8B 
7A 
8B 
7A 
8B . 

1.23 
1.89 
1.06 
1.22 
1.30 

2,1 
3,l 
3.1 
1 2  
4,1 
4,1 
3 2  
3 2  
5,l 
5,1 
1,3 
1,3 
2,3 
2,3 
3,3 
3.3 

364 
546 
546 
605 
789 
790 
889 
890 

1090 
1091 
1120 
1120 
1210 
1232 
1400 
1400 

0.00098 
0.00188 
0.001 93 
0.00273 
0.001 74 
0.00246 
0.00121 
0.00104 
0.001 68 
0.00149 
0.00171 
0.001 98 
0.00308 
0.00264 
0.00214 
0.001 89 

0 .96~  
1.10 
1.13 
1.35' 
0.92 
1.29 
0.95 
0.82 
1.32 
1.17 
0.91 
1.06 
0.98 
0.84 
1.10 
0.98 



TABLE V1.-SUMMARY OF MEASURED DAMPING FACTORS USING 
SINGLE-SIDED FOURIER TRANSFORM METHOD 

a ~ a t i o  of measured damping factor to datum damping factor. 

b~ i l te r  bandwidth too wide (AfF > 114 AfM) 

Mode order, m,n Frequency, fmrn, Hz Damping, S;n,n 

(a) High damping (spectral peak-to-valley ratio, > 10 dB) 

1.02 
0.82 
1.21 
1.04 
1.07 
0.87 
1.07 
0.98 
0.87 
0.94 
0.86 
0.99 
1.17 
1.08 
0.82 

2 B 
9B 
38 
4B 
8B 
9B 
4B 
48 
4B 
88 
9B 
7B 
86 
7A 
8B 

357 
358 
537 
534 
536 
537 
775 
775 
770 
776 
773 

1179 
1194 
1347 
1354 

2,1 
2,1 
3,1 
3.1 
3,1 
3.1 
4,l 
4.1 
4,1 
4,1 
4,1 
2.3 
2.3 
3.3 
3.3 

L 

(b) High damping (spectral peak-to-valley ratio < 10 dB) 

0.01 56 
0.01 26 
0.01 39 
0.01 20 
0.01 23 
0.0100 
0.0188 
0.0171 
0.01 52 
0.0164 
0.01 50 
0.0126 
0.0148 
0.0105 
0.0080 

8B 
7A 
88 
7A 
7A 
8B 
7 B 

3 2  
5,l 
5.1 
4.2 
1,3 
1,3 
3,3 

(c )  Low damping 

862 
970 
970 

1056 
1091 
1085 
1340 

86 
8B 
8B 
88 
88 
8B 
8B 

0.01 83 
0.0354 
0.01 78 
0.0205 
0.0214 
0.01 20 
0.0088 

2,1 
3,l 
4,1 
3 2  
5,1 
1.3 
3.3 

1.62 
1.77 
0.89 
1.26 
1.69 
0.94 
0.91 

364 
546 
790 
890 

1099 
1117 
1398 

0.00 1 74 
0.00227 
0.00216 
0.001 34 
0.002 13 
0.00279 
0.001 85 

1 .70b 
1 .34b 
1.14 
1.05 
1.68 
1.48 
0.96 



Response Excitation 
Linear system 
defined by 

(a) Noise-Free System 

Noise p2(x", t )  

(b) Noise in Excitation 

Measured response 

w(2,t) 
Excitation 

pl(xl, t) 

4 

H ( o ) ,  h(T), 44x1 

Noise p2(x", t )  Noise n(t)  

(c) Noise in Excitation and Response 

Measured 
Vibration signal 

w'(x, t) W(X, t) - Excitation 

Pl  (x', t )  

Figure 1. -Schematic o f  Linear System Under Investigation 

H(u), h(T). $(x) 

, L 



Frequency, Hz 

Damping factor, 
0 0,004 
V 0.014 
A 0.020 

0.040 

Figure 2.-Effect of Statistical Couplit,g 

v 
O n 

Mode 

200 400 600 

0 
0 

(1.1) ,(1.2) 

v 

A 

(3,l) (22) 

n 

,(4.1) ,(2.3) 



0 .02 .04 .06 .08 .10 .12 

True damping factor, 5 
a! 

Figure 3.-Effect of  Off-Resonant Contribution on Measurement o f  Damping Factor 
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0 

' /' 

Analog tape replay A/D converter / ' ~ i ~ i t a l  data tape 
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Reduced data plots 
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Figure 70. -Flow Chart of  Digital Data Reduction 



Frequency, Hz 
(a) V = 9 ,  €=0.33 (b) V = 25, E = 0.2 

FIGURE 1 1.-EFFECT OF NUMBER OF SUBSPECTRA ON STATISTICAL SCATTER 
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FIGURE 14.-NODAL LINE PA TTERNS FOR TEST PANEL
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Figure 16.- Vector Diagram for Mode (2,31, Low Dam~i l lg  



Figure 17. - Vector Diagram for Mode (2,3), High Damping 



Figure 18. -- Vector Diagram for Mode (2, I ) ,  High Damping 
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Figure 79. - Displaceme17 t Power Spectral Density for Run ZB, High Damping 
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Figure 20. -Displacement Power Spectral Density for Run 4B, High Damping 
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Figure 27.--Displacement Power Spectral De17sity for Run 9B, High Damping 
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Figure 22. -Displacement Power Spectral Density for Run 4B, Low Damping 
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Figure 23. -Displacement Power Spectral Density for Run 9B, Low Datnpirig 
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Figure 24. -Displacement Power Spectral Density for Run 8B, Low Damping 



Figure 25.- Vector Diagram of F,(w) for Mode (2,1), Run 9B, High Damping 



Figure 26.- Vector Diagram of F,(w/for Mode (2,3), Run 7B, High Damping 



Figure 27.- Vector Diagram of F,(o) for Modes (5, I ) ,  (4,2), and (1,3), Run 7A, High Damping 






